	[image: image2.png]

	http://www.dotnetnuke.com/
	Page 39 of 39

	
	DotNetNuke
	Date: 3/19/2004
Author: shaun.walker

DotNetNuke Data Access Whitepaper

Written By:

Shaun Walker – Perpetual Motion Interactive Systems Inc.

http://www.perpetualmotion.ca

Table of Contents

2Introduction

2Strategy

3Requirements

4Configuration

8Data Access Layer (DAL)

11Database Scripts

12Database Object Naming

12Application Blocks

13Data Transport

13Business Logic Layer (BLL)

14Custom Business Object Helper (CBO)

17NULL Handling

19Implementation Details

25Caching

26Performance

27Development

27Custom Modules

30Core Enhancements

31SqlCommandGenerator

31Credits

Introduction

The ultimate goal of DotNetNuke is to create a portal framework which provides a solid foundation of building block services that developers can leverage to create a robust application. One of the key functions in any application is data access. The .NET Framework provides a variety of methods for performing data access and from an architecture perspective it feels a bit like navigating a complex maze when it comes to selecting the optimal solution to meet your needs. This whitepaper will attempt to reduce the complexity and provide justification for the data access strategy implemented in the DotNetNuke application.

Strategy

Although a variety of literature exists on the various data access methods in the .NET Framework, the majority of it is too high level to actually apply in real world situations. The various methods are usually discussed in terms of their specific strengths and weaknesses but at the end of the day, the developer is still left with lingering questions as to the best overall choice for their application. The ultimate dilemma is centered around the fact that each data access method is best suited to different application use cases. In theory this is great; however in practice, each developer is looking for a consistent data access strategy to apply across the entire enterprise.

A consistent data access strategy has some key benefits to the organization. The fact that the data access pattern is consistently defined results in higher productivity as the developer is not required to waste time selecting a data access method for each task. This results in improved code maintainability as the pattern is implemented consistently in all application areas. The risk of poor data access choices are minimized and the integrity of the code is increased through the centralization of data access components.

The concept of a consistent data access strategy certainly opposes the notion that each business requirement needs to be matched to an optimal data access method. The philosophy of choosing a specific data access method for each task should theoretically result in the best overall performance for your application (assuming you made the appropriate selection in all cases). However, this perceived benefit is far overshadowed by the liability in terms of inconsistent development practices.

Falling back on traditional concepts known as the 80/20 rule, DotNetNuke has focused on providing a consistent data access strategy which achieves the optimal goals in 80 percent of application use cases. In the other 20 percent, it is up to the organization to decide whether the performance requirements necessitate the implementation of a different data access method for the task; while at the same time accepting the consequences outlined above.

Requirements

One of the key requirements of DotNetNuke is to provide an implementation of the application that supports multiple data stores.

Due to the fact we require the ultimate in flexibility and performance in terms of communicating with external data stores, we chose to discard the generic data access approach and build the application to take advantage of the database-native feature set (ie. .NET managed providers, proprietary SQL dialects, stored procedures, etc…). The tradeoff that we made when choosing to go with a database-specific access class was that we would need to write a separate data access layer for each database platform we wanted to support and hence the application would contain more code. While the data access layers share much common code, each is clearly targeted for use with a specific database.

In order to simplify the use of the database access classes we elected to use the Provider Pattern (also known as the Factory Design Pattern as outlined by the Gang of Four – GOF), with reflection being used to dynamically load the correct data access objects at runtime. The factory is implemented as follows: an abstract class is created with a method declared for each method that must be exposed by the database access classes. For each database that we want to support, we create a concrete class that implements the database specific code to perform each of the operations in the abstract class or "contract." To support the runtime determination of which concrete class to load, we also include an Instance() method which is the factory itself and relies on our generic Provider class to read a value from configuration file to determine which assembly to load using reflection. Due to the fact that reflection is very expensive in terms of application performance, we store the constructor of the data provider class in the cache.

Why abstract classes instead of interfaces? This is due to the fact that interfaces are immutable (static) and as a result do not lend themselves to versioning. Because interfaces do not support implementation inheritance, the pattern that applies to classes does not apply to interfaces. Adding a method to an interface is equivalent to adding an abstract method to a base class; any class that implements the interface will break because the class does not implement the new method.

The following diagram shows how the business logic, factory, and databases access classes interact with each other. The key advantage of the solution built is that the database access class can be compiled after the business logic classes as long as the data access class implements the DataProvider abstract class methods. This means that should we want to create an implementation for another database, we do not need to change the business logic tier (or UI tier). The steps to create another implementation are:

1. Create the database access classes for the new database which implement the DataProvider abstract class.

2. Compile the class into an assembly.

3. Test and deploy the new data assembly to a running server.

4. Change the configuration file to point to the new database access class.

5. No changes or recompiles need to be performed on the business logic components.

[image: image1.png]DotNetNuke Architecture

Presentation Layer (UI)

* T
@hm
Custom Business
e =
Gt
i Business Logic Layer (BLL) o
Data Access Layer (DAL }
IDataReader Scalars

Configuration

The web.config file contains a number of critical sections to enable the DataProvider pattern. The first section registers the Providers and their corresponding ConfigurationSectionHandlers. Although in this instance we only have a single section specified for the DotNetNuke group, we could use the exact same method to configure other providers (ie. abstract authentication providers, etc…). The only catch is that the section name value must be implemented elsewhere in the web.config file.

 <configSections>

 <sectionGroup name="dotnetnuke">

 <section name="data" type="DotNetNuke.ProviderConfigurationHandler, DotNetNuke" />

 </sectionGroup>

 </configSections>

The following section is retained for legacy modules which rely on the old method of data access:

<appSettings>

<add key="connectionString" value="Server=localhost;Database=DotNetNuke;uid=sa;pwd=;" />

</appSettings>

And finally the meat of the Provider model. The <data> section name within the <dotnetnuke> group (as described in the configSections above) should contain a defaultProvider attribute which relates to a specific instance in the <providers> collection below. The defaultProvider is used as the single switch for changing from one provider to another. If a default provider is not specified, the first item in the collection is considered the default.

The <data> section also includes a <providers> collection specification where all of the implementations for <data> are identified. At a bare minimum, each provider must include a name, type, and providerPath attribute (name is generic but usually refers to the classname, type refers to the strong classname of the provider, and providerPath refers to the location where provider specific resources such as scripts can be found). Each provider can also have any number of custom attributes as well.

 <dotnetnuke>

 <data defaultProvider="SqlDataProvider" >

 <providers>

 <clear/>

 <add name = "SqlDataProvider"

 type = "DotNetNuke.Data.SqlDataProvider, DotNetNuke.SqlDataProvider"

 connectionString = "Server=localhost;Database=DotNetNuke;uid=sa;pwd=;"

 providerPath = "~\Providers\DataProvider\SqlDataProvider\"

 objectQualifier = "DotNetNuke"

 databaseOwner = "dbo"

 />

 <add name = "AccessDataProvider"

 type = "DotNetNuke.Data.AccessDataProvider, DotNetNuke.AccessDataProvider"

 connectionString = "PROVIDER=Microsoft.Jet.OLEDB.4.0;"

 providerPath = "~\ Providers\DataProvider\AccessDataProvider\"

 objectQualifier = "DotNetNuke"

 databaseFilename = "DotNetNuke.resources"

 />

 </providers>

 </data>

 </dotnetnuke>

The following specification rules are in effect for defining nodes within the “providers” collection.

The <providers> configuration section contains one or more <add>, <remove>, or <clear> elements. The following rules apply when processing these elements:

1. It is not an error to declare an empty <providers /> element.

2. Providers inherit items from parent configuration <add> statements.

3. It is an error to redefine an item using <add> if the item already exists or is inherited.

4. It is an error to <remove> a non-existing item.

5. It is not an error to <add>, <remove>, and then <add> the same item again.

6. It is not an error to <add>, <clear>, and then <add> the same item again.

7. <clear> removes all inherited items and items previously defined, e.g. an <add> declared before a <clear> is removed while an <add> declared after a <clear> is not removed.

	<add>

	Description
	Adds a data provider.

	Attributes
	name – Friendly name of the provider.

type – A class that implements the required provider interface. The value is a fully qualified reference to an assembly.

providerPath - the location where provider specific resources such as scripts can be found

Other name/value pairs – Additional name value pairs may be present. All name/value pairs are the responsibility of the provider to understand.

	<remove>

	Description
	Removes a named data provider.

	Attributes
	name – Friendly name of the provider to remove.

	<clear>

	Description
	Removes all inherited providers.

\Components\Provider.vb

The Provider.vb class provides all of the implementation details for loading the provider information from the web.config file and applying the <add>, <remove>, <clear> processing rules. It is a generic class which is not only applicable to data access.

\Components\DataProvider.vb

The DataProvider.vb is the abstract class containing all data access methods for DotNetNuke. It contains an Instance() method which is the factory itself and loads the appropriate assembly at runtime based on the web.config specification.

 ' provider constants - eliminates need for Reflection later

 Private Const [ProviderType] As String = "data" ' maps to <sectionGroup> in web.config

 Public Shared Function Instance() As DataProvider

 Dim strCacheKey As String = [ProviderType] & "provider"

 ' Use the cache because the reflection used later is expensive

 Dim objConstructor As ConstructorInfo = CType(DataCache.GetCache(strCacheKey), ConstructorInfo)

 If objConstructor Is Nothing Then

 ' Get the name of the provider

 Dim objProviderConfiguration As ProviderConfiguration = ProviderConfiguration.GetProviderConfiguration([ProviderType])

 ' The assembly should be in \bin or GAC, so we simply need to get an instance of the type

 Try

 ' Get the typename of the Core DataProvider from web.config

 Dim strTypeName As String = CType(objProviderConfiguration.Providers(objProviderConfiguration.DefaultProvider), Provider).Type

 ' Use reflection to store the constructor of the class that implements DataProvider

 Dim t As Type = Type.GetType(strTypeName, True)

 objConstructor = t.GetConstructor(System.Type.EmptyTypes)

 ' Insert the type into the cache

 DataCache.SetCache(strCacheKey, objConstructor)

 Catch e As Exception

 ' Could not load the provider - this is likely due to binary compatibility issues

 End Try

 End If

 Return CType(objConstructor.Invoke(Nothing), DataProvider)

 End Function

All data access methods are defined as MustOverride which means that any data provider derived from this class must provide implementations for these methods. This defines the abstract class contract between the Business Logic Layer and the Data Access Layer.

 ' links module

 Public MustOverride Function GetLinks(ByVal ModuleId As Integer) As IDataReader

 Public MustOverride Function GetLink(ByVal ItemID As Integer, ByVal ModuleId As Integer) As IDataReader

 Public MustOverride Sub DeleteLink(ByVal ItemID As Integer)

 Public MustOverride Sub AddLink(ByVal ModuleId As Integer, ByVal UserName As String, ByVal Title As String, ByVal Url As String, ByVal MobileUrl As String, ByVal ViewOrder As String, ByVal Description As String, ByVal NewWindow As Boolean)

 Public MustOverride Sub UpdateLink(ByVal ItemId As Integer, ByVal UserName As String, ByVal Title As String, ByVal Url As String, ByVal MobileUrl As String, ByVal ViewOrder As String, ByVal Description As String, ByVal NewWindow As Boolean)

Data Access Layer (DAL)

The Data Access Layer must implement the methods contained in the DataProvider abstract class. However, each DAL provider may be very different in its actual implementation of these methods. This approach allows the provider the flexibility to choose its own database access protocol (ie. managed .NET, OleDB, ODBC, etc…). It also allows the provider to deal with proprietary differences between database platforms (ie. stored procedures, SQL language syntax, @@IDENTITY).

Each data provider must specify an implementation for its custom attributes defined in the web.config file.

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports Microsoft.ApplicationBlocks.Data

Imports System.IO

Imports System.Web

Imports DotNetNuke

Namespace DotNetNuke.Data

 Public Class SqlDataProvider

 Inherits DataProvider

 Private Const ProviderType As String = "data"

 Private _providerConfiguration As ProviderConfiguration = ProviderConfiguration.GetProviderConfiguration(ProviderType)

 Private _connectionString As String

 Private _providerPath As String

 Private _objectQualifier As String

 Private _databaseOwner As String

 Public Sub New()

 ' Read the configuration specific information for this provider

 Dim objProvider As Provider = CType(_providerConfiguration.Providers(_providerConfiguration.DefaultProvider), Provider)

 ' Read the attributes for this provider

 _connectionString = objProvider.Attributes("connectionString")

 _providerPath = objProvider.Attributes("providerPath")

 _objectQualifier = objProvider.Attributes("objectQualifier")

 If _objectQualifier <> "" And _objectQualifier.EndsWith("_") = False Then

 objectQualifier += ""

 End If

 _databaseOwner = objProvider.Attributes("databaseOwner")

 If _databaseOwner <> "" And _databaseOwner.EndsWith(".") = False Then

 _databaseOwner += "."

 End If

 End Sub

 Public ReadOnly Property ConnectionString() As String

 Get

 Return _connectionString

 End Get

 End Property

 Public ReadOnly Property ProviderPath() As String

 Get

 Return _providerPath

 End Get

 End Property

 Public ReadOnly Property ObjectQualifier() As String

 Get

 Return _objectQualifier

 End Get

 End Property

 Public ReadOnly Property DatabaseOwner() As String

 Get

 Return _databaseOwner

 End Get

 End Property
Data access methods must be designed as simple queries (ie. single SELECT, INSERT, UPDATE, DELETE) so that they can be implemented on all database platforms. Business logic such as conditional branches, calculations, or local variables should be implemented in the Business Logic Layer so that it is abstracted from the database and centralized within the application. This simplistic approach to data access may take some getting used to if you frequently work with rich SQL languages variants that allow you to implement programming logic at the database level (ie. Transact-SQL stored procedures which perform either an INSERT or UPDATE based on the specification of an identifier).

The SQL Server / MSDE DataProvider included with DotNetNuke uses Stored Procedures as a best practice data access technique.

 ' links module

 Public Overrides Function GetLinks(ByVal ModuleId As Integer) As IDataReader

 Return CType(SqlHelper.ExecuteReader(ConnectionString, DatabaseOwner & ObjectQualifier & "GetLinks", ModuleId), IDataReader)

 End Function

 Public Overrides Function GetLink(ByVal ItemId As Integer, ByVal ModuleId As Integer) As IDataReader

 Return CType(SqlHelper.ExecuteReader(ConnectionString, DatabaseOwner & ObjectQualifier & "GetLink", ItemId, ModuleId), IDataReader)

 End Function

 Public Overrides Sub DeleteLink(ByVal ItemId As Integer)

 SqlHelper.ExecuteNonQuery(ConnectionString, DatabaseOwner & ObjectQualifier & "DeleteLink", ItemId)

 End Sub

 Public Overrides Function AddLink(ByVal ModuleId As Integer, ByVal UserName As String, ByVal Title As String, ByVal Url As String, ByVal MobileUrl As String, ByVal ViewOrder As String, ByVal Description As String, ByVal NewWindow As Boolean) As Integer

 Return CType(SqlHelper.ExecuteScalar(ConnectionString, DatabaseOwner & ObjectQualifier & "AddLink", ModuleId, UserName, Title, Url, MobileUrl, GetNull(ViewOrder), Description, NewWindow), Integer)

 End Function

 Public Overrides Sub UpdateLink(ByVal ItemId As Integer, ByVal UserName As String, ByVal Title As String, ByVal Url As String, ByVal MobileUrl As String, ByVal ViewOrder As String, ByVal Description As String, ByVal NewWindow As Boolean)

 SqlHelper.ExecuteNonQuery(ConnectionString, DatabaseOwner & ObjectQualifier & "UpdateLink", ItemId, UserName, Title, Url, MobileUrl, GetNull(ViewOrder), Description, NewWindow)

 End Sub

The Microsoft Access data provider included with DotNetNuke also uses stored procedures (stored queries) but does not have the Auto Parameter Discovery feature (CommandBuilder.DeriveParameters) therefore the parameters must be explicitly declared. Also notice that Access does not support @@IDENTITY to return the unique auto number generated; therefore, it must be retrieved in a subsequent database call (GetLinkIdentity).
 ' links module

 Public Overrides Function GetLinks(ByVal ModuleId As Integer) As IDataReader

 Return CType(OleDBHelper.ExecuteReader(ConnectionString, CommandType.StoredProcedure, ObjectQualifier & "GetLinks", _

 New OleDbParameter("@ModuleId", ModuleId)), IDataReader)

 End Function

 Public Overrides Function GetLink(ByVal ItemId As Integer, ByVal ModuleId As Integer) As IDataReader

 Return CType(OleDBHelper.ExecuteReader(ConnectionString, CommandType.StoredProcedure, ObjectQualifier & "GetLink", _

 New OleDbParameter("@ItemId", ItemId), _

 New OleDbParameter("@ModuleId", ModuleId)), IDataReader)

 End Function

 Public Overrides Sub DeleteLink(ByVal ItemId As Integer)

 OleDBHelper.ExecuteNonQuery(ConnectionString, CommandType.StoredProcedure, ObjectQualifier & "DeleteLink", _

 New OleDbParameter("@ItemId", ItemId))

 End Sub

 Public Overrides Function AddLink(ByVal ModuleId As Integer, ByVal UserName As String, ByVal Title As String, ByVal Url As String, ByVal MobileUrl As String, ByVal ViewOrder As String, ByVal Description As String, ByVal NewWindow As Boolean) As Integer

 OleDBHelper.ExecuteNonQuery(ConnectionString, CommandType.StoredProcedure, ObjectQualifier & "AddLink", _

 New OleDbParameter("@ModuleId", ModuleId), _

 New OleDbParameter("@UserName", UserName), _

 New OleDbParameter("@Title", Title), _

 New OleDbParameter("@Url", Url), _

 New OleDbParameter("@MobileUrl", MobileUrl), _

 New OleDbParameter("@ViewOrder", GetNull(ViewOrder)), _

 New OleDbParameter("@Description", Description), _

 New OleDbParameter("@NewWindow", NewWindow))

 Return CType(OleDBHelper.ExecuteScalar(ConnectionString, CommandType.StoredProcedure, ObjectQualifier & "GetLinkIdentity", _

 New OleDbParameter("@ModuleId", ModuleId), _

 New OleDbParameter("@Title", Title)), Integer)

 End Function

 Public Overrides Sub UpdateLink(ByVal ItemId As Integer, ByVal UserName As String, ByVal Title As String, ByVal Url As String, ByVal MobileUrl As String, ByVal ViewOrder As String, ByVal Description As String, ByVal NewWindow As Boolean)

 OleDBHelper.ExecuteNonQuery(ConnectionString, CommandType.StoredProcedure, ObjectQualifier & "UpdateLink", _

 New OleDbParameter("@ItemId", ItemId), _

 New OleDbParameter("@UserName", UserName), _

 New OleDbParameter("@Title", Title), _

 New OleDbParameter("@Url", Url), _

 New OleDbParameter("@MobileUrl", MobileUrl), _

 New OleDbParameter("@ViewOrder", GetNull(ViewOrder)), _

 New OleDbParameter("@Description", Description), _

 New OleDbParameter("@NewWindow", NewWindow))

 End Sub

Database Scripts

DotNetNuke contains an Auto Upgrade feature which allows the application to upgrade the database automatically when a new application version is deployed. Scripts must be named according to version number and dataprovider (ie. 02.00.00.SqlDataProvider) and must be located in the directory specified in the providerPath attribute in the web.config file. Dynamic substitution can be implemented in scripts by overriding the ExecuteScript method in the provider implementation. This can be useful for object naming and security specifications.

create procedure {databaseOwner}{objectQualifier}GetLinks

@ModuleId int

as

select ItemId,

 CreatedByUser,

 CreatedDate,

 Title,

 Url,

 ViewOrder,

 Description,

 NewWindow

from {objectQualifier}Links

where ModuleId = @ModuleId

order by ViewOrder, Title

GO

Since many databases do not have a rich scripting language, each provider also has the ability to implement the UpgradeDatabaseSchema method which can be used to programmatically alter the database structure.

 Public Overrides Sub UpgradeDatabaseSchema(ByVal Major As Integer, ByVal Minor As Integer, ByVal Build As Integer)

 ' add your database schema upgrade logic related to a specific version. This is used for data stores which do not have a rich scripting language.

 Dim strVersion As String = Major.ToString & "." & Minor.ToString & "." & Build.ToString

 Select Case strVersion

 Case "02.00.00"

 End Select

 End Sub
SQL Language Syntax

SQL Server and MSDE have a rich scripting language called Transact-SQL which supports local variables, conditional branches (if …. then … else), and looping. Script can be nicely formatted using tabs and spaces for improved readability.
drop procedure {databaseOwner}{objectQualifier}GetPortalTabModules

go

create procedure {databaseOwner}{objectQualifier}GetPortalTabModules

@PortalId int,

@TabId int

as

select {objectQualifier}Modules.*,

 {objectQualifier}Tabs.AuthorizedRoles,

 {objectQualifier}ModuleControls.ControlSrc,

 {objectQualifier}ModuleControls.ControlType,

 {objectQualifier}ModuleControls.ControlTitle,

 {objectQualifier}DesktopModules.*

from {objectQualifier}Modules

inner join {objectQualifier}Tabs on {objectQualifier}Modules.TabId = {objectQualifier}Tabs.TabId

inner join {objectQualifier}ModuleDefinitions on {objectQualifier}Modules.ModuleDefId = {objectQualifier}ModuleDefinitions.ModuleDefId

inner join {objectQualifier}ModuleControls on {objectQualifier}ModuleDefinitions.ModuleDefId = {objectQualifier}ModuleControls.ModuleDefId

inner join {objectQualifier}DesktopModules on {objectQualifier}ModuleDefinitions.DesktopModuleId = {objectQualifier}DesktopModules.DesktopModuleId

where ({objectQualifier}Modules.TabId = @TabId or ({objectQualifier}Modules.AllTabs = 1 and {objectQualifier}Tabs.PortalId = @PortalId))

and ControlKey is null

order by ModuleOrder

GO
MS Access has its own proprietary SQL language called JET SQL. In contrast to Transact-SQL, JET SQL is an extremely limited scripting language as it has no support for local variables, conditional branches, or looping. This limits the queries to very simple CRUD operations. A few syntactical items to note are JET does not accept script formatting using tabs, stored queries need () around the parameter list and parameter names must be wrapped in [@], NULL must be handled using the isnull() function, the word “outer” is dropped from the join clause, the Now() function returns the current date, bit fields use boolean True and False specification, and the query must be completed with a semi-colon (“;”).

drop procedure {objectQualifier}GetPortalTabModules

go

create procedure {objectQualifier}GetPortalTabModules ([@PortalId] int, [@TabId] int)

as

select {objectQualifier}Modules.*,

 {objectQualifier}Tabs.AuthorizedRoles,

 {objectQualifier}ModuleControls.ControlSrc,

 {objectQualifier}ModuleControls.ControlType,

 {objectQualifier}ModuleControls.ControlTitle,

 {objectQualifier}DesktopModules.*

from {objectQualifier}Modules, {objectQualifier}Tabs, {objectQualifier}DesktopModules, {objectQualifier}ModuleDefinitions, {objectQualifier}ModuleControls

where {objectQualifier}Modules.TabId = {objectQualifier}Tabs.TabId

and {objectQualifier}Modules.ModuleDefId = {objectQualifier}ModuleDefinitions.ModuleDefId

and {objectQualifier}ModuleDefinitions.ModuleDefId = {objectQualifier}ModuleControls.ModuleDefId

and {objectQualifier}DesktopModules.DesktopModuleId = {objectQualifier}ModuleDefinitions.DesktopModuleId

and ({objectQualifier}Modules.TabId = [@TabId] or ({objectQualifier}Modules.AllTabs = True and {objectQualifier}Tabs.PortalId = [@PortalId]))

and isnull(ControlKey) = True

order by ModuleOrder;

GO
Another item to note is that MS Access is a file-based database and as a result, requires write access at the file system level. In addition, the *.mdb file extension is not secured by default; therefore, you need to take precautions to ensure your data can not be compromised. As a result, the default web.config file specifies the database filename as DotNetNuke.resources. The *.resources file extension is protected by ASP.NET using the HttpForbiddenHandler in the machine.config and prevents unauthorized download. The Template.resources file distributed with the AccessDataProvider is a template database which contains a baseline schema and data for creating new Access databases.
Database Object Naming

The web.config file includes an attribute named objectQualifer which allows you to specify a prefix for your database obects (ie. DNN_). Web hosting plans usually offer only one SQL Server database that you have to share among all web applications in your account. If you do not specify an object prefix you may have a naming conflict with an application that already uses a specific object name (ie. Users table). Another benefit of prefixing object names is they will be displayed grouped together in tools such as Enterprise Manager for SQL Server when listed alphabetically which simplifies management.

If you are upgrading a pre-2.0 DotNetNuke database, you will want to set the objectQualifier to “”. This is because you may have third party modules which do not use the new DAL architecture and are dependent on specific object names. Setting the objectQualifier on an upgrade will rename all of your core database objects which may result in errors in your custom modules.

Application Blocks

The Microsoft Data Access Application Block (MSDAAB) is a .NET component that contains optimized data access code that helps you call stored procedures and issue SQL text commands against a SQL Server database. We use it as a building block in DotNetNuke to reduce the amount of custom code needed to create, test, and maintain data access functions in the application. We also created an OleDB.ApplicationBlocks.Data assembly for the Microsoft Access data provider based on the MSDAAB code.

In terms of implementation we chose to use the MSDAAB as a black box component rather than include the actual source code in our DAL implementation. This decision helps prevent modification of the MSDAAB code which enables us to upgrade the component seamlessly as new features/fixes become available.
Data Transport

DotNetNuke uses the DataReader for passing collections of data from the Data Access Layer (DAL) to the Business Logic layer (BLL) layer. The DataReader was chosen because it is the fastest performing data transport mechanism available in ADO.NET (a forward only, read only, stream of data). The IDataReader is the base interface for all .NET compatible DataReaders. The abstract IDataReader allows us to pass data between layers without worrying about the data access protocol being used in the actual data provider implementation (ie. SqlClient, OleDB, ODBC, etc…).

Business Logic Layer (BLL)

Good object oriented design recommends the abstraction of the data store from the rest of the application. Abstraction allows the application to build upon an independent set of logical interfaces; thereby reducing the dependency on the physical implementation of the underlying database.

The Business Logic Layer for DotNetNuke is effectively defined in the \Components subfolder. The Business Logic Layer contains the abstract classes which the Presentation Layer calls for various application services. In terms of data access, the Business Logic Layer forwards API calls to the appropriate data provider using the DataProvider factory mechanism discussed earlier in this document.

Custom Business Objects are an object oriented technique of encapsulating data in user defined structures. Custom Business Objects require some custom coding but the payoff comes in terms of a type safe programming model, disconnected data storage, and serialization. Custom Business Objects offer the maximum flexibility as they allow the application to define the data structures in its own abstract terms; eliminating the dependency on proprietary data containers (ie. RecordSet, DataSet).

What is a type-safe programming model? Please consider the following data access code sample: variable = DataReader(“fieldname”). You will notice that a database field value is being assigned to a variable. The problem with this code is that there is no way to ensure the data type of the field matches the data type of the variable; and any errors in the assignment will be reported at run-time. If we use Custom Business Objects the data access code will look like: variable = Object.Property. In this case the compiler will tell us immediately if the data types do not match. Type-safe programming also provides intellisense and improved code readability.

A group of Objects is called a Collection. In DotNetNuke we use a standard ArrayList to represent a group of Custom Business Objects. ArrayLists are intrinsic ASP.NET objects which contain all of the features you would expect in a base collection (add, remove, find, and iterate). The most important feature of the ArrayList for our purposes is that it implements the IEnumerable interface which allows it to be databound to any ASP.NET web control.

In DotNetNuke the Data Access Layer passes information to the Business Logic Layer in the form of a DataReader. A question which may arise in regards to this implementation is why DotNetNuke relies on the DataReader as a data transport container rather than serving up Custom Business Objects directly from the DAL. The answer is that although both options are viable, we believe the complete isolation of the DAL from the BLL has some advantages. For example, consider the task of adding an additional property to a custom business object. In this case the property is only used in the Presentation Layer and does not need to be stored in the database. Using DotNetNuke’s approach, there are absolutely no changes required to the DAL implementations as they are not dependent in any way upon the BLL. However, if the DAL was architected to serve custom business objects directly, all of the DAL implementations would need to be recompiled to make them compatible with the BLL structure.

Custom Business Object Helper (CBO)

In an effort to minimize the mundane coding task of populating custom business objects with information from the data layer (passed as DataReader), a generic utility class has been created for this purpose. The class contains two public functions - one for hydrating a single object instance and one for hydrating a collection of objects (ArrayList). The routine assumes that each property in the class definition has a corresponding field in the DataReader. The atomic mapping of information must be identical in terms of Name and Data Type. The code uses Reflection to fill the custom business object with data and close the DataReader.

 Public Class CBO

 Private Shared Function GetPropertyInfo(ByVal objType As Type) As ArrayList

 ' Use the cache because the reflection used later is expensive

 Dim objProperties As ArrayList = CType(DataCache.GetCache(objType.Name), ArrayList)

 If objProperties Is Nothing Then

 objProperties = New ArrayList

 Dim objProperty As PropertyInfo

 For Each objProperty In objType.GetProperties()

 objProperties.Add(objProperty)

 Next

 DataCache.SetCache(objType.Name, objProperties)

 End If

 Return objProperties

 End Function

 Private Shared Function GetOrdinals(ByVal objProperties As ArrayList, ByVal dr As IDataReader) As Integer()

 Dim arrOrdinals(objProperties.Count) As Integer

 Dim intProperty As Integer

 If Not dr Is Nothing Then

 For intProperty = 0 To objProperties.Count - 1

 arrOrdinals(intProperty) = -1

 Try

 arrOrdinals(intProperty) = dr.GetOrdinal(CType(objProperties(intProperty), PropertyInfo).Name)

 Catch

 ' property does not exist in datareader

 End Try

 Next intProperty

 End If

 Return arrOrdinals

 End Function

 Private Shared Function CreateObject(ByVal objType As Type, ByVal dr As IDataReader, ByVal objProperties As ArrayList, ByVal arrOrdinals As Integer()) As Object

 Dim objObject As Object = Activator.CreateInstance(objType)

 Dim intProperty As Integer

 ' fill object with values from datareader

 For intProperty = 0 To objProperties.Count - 1

 If CType(objProperties(intProperty), PropertyInfo).CanWrite Then

 If arrOrdinals(intProperty) <> -1 Then

 If IsDBNull(dr.GetValue(arrOrdinals(intProperty))) Then

 ' translate Null value

 CType(objProperties(intProperty), PropertyInfo).SetValue(objObject, Null.SetNull(CType(objProperties(intProperty), PropertyInfo)), Nothing)

 Else

 Try

 ' try implicit conversion first

 CType(objProperties(intProperty), PropertyInfo).SetValue(objObject, dr.GetValue(arrOrdinals(intProperty)), Nothing)

 Catch ' data types do not match

 Try

 Dim pType As Type = CType(objProperties(intProperty), PropertyInfo).PropertyType

 'need to handle enumeration conversions differently than other base types

 If pType.BaseType.Equals(GetType(System.Enum)) Then

 CType(objProperties(intProperty), PropertyInfo).SetValue(objObject, System.Enum.ToObject(pType, dr.GetValue(arrOrdinals(intProperty))), Nothing)

 Else

 ' try explicit conversion

 CType(objProperties(intProperty), PropertyInfo).SetValue(objObject, Convert.ChangeType(dr.GetValue(arrOrdinals(intProperty)), pType), Nothing)

 End If

 Catch

 ' error assigning a datareader value to a property

 End Try

 End Try

 End If

 Else ' property does not exist in datareader

 CType(objProperties(intProperty), PropertyInfo).SetValue(objObject, Null.SetNull(CType(objProperties(intProperty), PropertyInfo)), Nothing)

 End If

 End If

 Next intProperty

 Return objObject

 End Function

 Public Shared Function FillObject(ByVal dr As IDataReader, ByVal objType As Type) As Object

 Dim objFillObject As Object

 Dim intProperty As Integer

 ' get properties for type

 Dim objProperties As ArrayList = GetPropertyInfo(objType)

 ' get ordinal positions in datareader

 Dim arrOrdinals As Integer() = GetOrdinals(objProperties, dr)

 ' read datareader

 If dr.Read Then

 ' fill business object

 objFillObject = CreateObject(objType, dr, objProperties, arrOrdinals)

 Else

 objFillObject = Nothing

 End If

 ' close datareader

 If Not dr Is Nothing Then

 dr.Close()

 End If

 Return objFillObject

 End Function

 Public Shared Function FillCollection(ByVal dr As IDataReader, ByVal objType As Type) As ArrayList

 Dim objFillCollection As New ArrayList()

 Dim objFillObject As Object

 Dim intProperty As Integer

 ' get properties for type

 Dim objProperties As ArrayList = GetPropertyInfo(objType)

 ' get ordinal positions in datareader

 Dim arrOrdinals As Integer() = GetOrdinals(objProperties, dr)

 ' iterate datareader

 While dr.Read

 ' fill business object

 objFillObject = CreateObject(objType, dr, objProperties, arrOrdinals)

 ' add to collection

 objFillCollection.Add(objFillObject)

 End While

 ' close datareader

 If Not dr Is Nothing Then

 dr.Close()

 End If

 Return objFillCollection

 End Function

 Public Shared Function InitializeObject(ByVal objObject As Object, ByVal objType As Type) As Object

 Dim intProperty As Integer

 ' get properties for type

 Dim objProperties As ArrayList = GetPropertyInfo(objType)

 ' initialize properties

 For intProperty = 0 To objProperties.Count - 1

 If CType(objProperties(intProperty), PropertyInfo).CanWrite Then

 CType(objProperties(intProperty), PropertyInfo).SetValue(objObject, Null.SetNull(CType(objProperties(intProperty), PropertyInfo)), Nothing)

 End If

 Next intProperty

 Return objObject

 End Function

 Public Shared Function Serialize(ByVal objObject As Object) As XmlDocument

 Dim objXmlSerializer As New XmlSerializer(objObject.GetType())

 Dim objStringBuilder As New StringBuilder

 Dim objTextWriter As TextWriter = New StringWriter(objStringBuilder)

 objXmlSerializer.Serialize(objTextWriter, objObject)

 Dim objStringReader As New StringReader(objTextWriter.ToString())

 Dim objDataSet As New DataSet

 objDataSet.ReadXml(objStringReader)

 Dim xmlSerializedObject As New XmlDocument

 xmlSerializedObject.LoadXml(objDataSet.GetXml())

 Return xmlSerializedObject

 End Function

 End Class

NULL Handling

Nearly every data store has a construct to specify when a field value has not been explicitly specified. In most relational database management systems this construct is known as a NULL value. From an application perspective, passing NULL values between the Presentation Layer and Data Access Layer is an architectural challenge. This is because the Presentation Layer must be abstracted from database specific details; yet, it must be able to specify when a property value has not been explicitly set. This is further complicated by the fact that the .NET Framework native data types are not capable of representing the NULL value returned from the database (an exception will be thrown if you attempt to perform this operation). In addition, each data store has its own proprietary implementation for NULL. The only reasonable solution is to create an abstract translation service which can be used to encode/decode NULL values between application layers.

At first glance you may think the “Nothing” keyword in VB.NET would be a perfect candidate for this translation service. Unfortunately, research reveals that the .NET Framework native data types do not exhibit expected behavior when dealing with “Nothing”. Although a property assignment to “Nothing” does not throw an exception, the actual property value will vary depending on the data type (String = Nothing, Date = Date.MinValue, Integer = 0, Boolean = False, etc…) and as a result the native IsNothing() function will not yield consistent results.

In DotNetNuke we have created a generic class for dealing with the NULL issue in a consistent manner across all application layers. Essentially, constant values for each supported data type are used to represent the NULL condition within the application. The constants are then converted to actual database NULL values in each specific data store implementation. A variety of methods are included so that the physical details of the NULL translation service are abstracted from the application.

*Please note that this class only needs to be used in situations where the database field actually allows NULL values (refer to the Implementation Details section for examples). Also note that this class requires the field data type be consistent in both the DAL and BLL layers (ie. the data type of the property in the BLL Info class must be the same as the data type of the parameter passed in the DAL DataProvider).
 Public Class Null

 ' define application encoded null values

 Public Shared ReadOnly Property NullInteger() As Integer

 Get

 Return -1

 End Get

 End Property

 Public Shared ReadOnly Property NullDate() As Date

 Get

 Return Date.MinValue

 End Get

 End Property

 Public Shared ReadOnly Property NullString() As String

 Get

 Return ""

 End Get

 End Property

 Public Shared ReadOnly Property NullBoolean() As Boolean

 Get

 Return False

 End Get

 End Property

 ' sets a field to an application encoded null value (used in Presentation layer)

 Public Shared Function SetNull(ByVal objField As Object) As Object

 If Not objField Is Nothing Then

 If TypeOf objField Is Integer Then

 SetNull = NullInteger

 ElseIf TypeOf objField Is Date Then

 SetNull = NullDate

 ElseIf TypeOf objField Is String Then

 SetNull = NullString

 ElseIf TypeOf objField Is Boolean Then

 SetNull = NullBoolean

 Else

 Throw New NullReferenceException

 End If

 Else ' assume string

 SetNull = NullString

 End If

 End Function

 ' sets a field to an application encoded null value (used in BLL layer)

 Public Shared Function SetNull(ByVal objPropertyInfo As PropertyInfo) As Object

 Select Case objPropertyInfo.PropertyType.ToString

 Case "System.Int16", "System.Int32", "System.Int64", "System.Single", "System.Double", "System.Decimal"

 SetNull = NullInteger

 Case "System.DateTime"

 SetNull = NullDate

 Case "System.String", "System.Char"

 SetNull = NullString

 Case "System.Boolean"

 SetNull = NullBoolean

 Case Else

 ' Enumerations default to the first entry

 Dim pType As Type = objPropertyInfo.PropertyType

 If pType.BaseType.Equals(GetType(System.Enum)) Then

 Dim objEnumValues As System.Array = System.Enum.GetValues(pType)

 Array.Sort(objEnumValues)

 SetNull = System.Enum.ToObject(pType, objEnumValues.GetValue(0))

 Else

 Throw New NullReferenceException

 End If

 End Select

 End Function

 ' convert an application encoded null value to a database null value (used in DAL)

 Public Shared Function GetNull(ByVal objField As Object, ByVal objDBNull As Object) As Object

 GetNull = objField

 If objField Is Nothing Then

 GetNull = objDBNull

 ElseIf TypeOf objField Is Integer Then

 If Convert.ToInt32(objField) = NullInteger Then

 GetNull = objDBNull

 End If

 ElseIf TypeOf objField Is Date Then

 If Convert.ToDateTime(objField) = NullDate Then

 GetNull = objDBNull

 End If

 ElseIf TypeOf objField Is String Then

 If objField Is Nothing Then

 GetNull = objDBNull

 Else

 If objField.ToString = NullString Then

 GetNull = objDBNull

 End If

 End If

 ElseIf TypeOf objField Is Boolean Then

 If Convert.ToBoolean(objField) = NullBoolean Then

 GetNull = objDBNull

 End If

 Else

 Throw New NullReferenceException

 End If

 End Function

 ' checks if a field contains an application encoded null value

 Public Shared Function IsNull(ByVal objField As Object) As Boolean

 If objField.Equals(SetNull(objField)) Then

 IsNull = True

 Else

 IsNull = False

 End If

 End Function

 End Class

Implementation Details

The following section provides code samples to demonstrate how the various application layers interface with one another to accomplish data access.
Presentation Layer (UI)

The Presentation Layer is dependent upon the Business Logic Layer for application services. Custom Business Object properties and methods establish the sole interface between these two layers (the Presentation Layer should never reference any data access methods directly).

Get

 ' create a Controller object

 Dim objAnnouncements As New AnnouncementsController

 ' get the collection
 lstAnnouncements.DataSource = objAnnouncements.GetAnnouncements(ModuleId)

 lstAnnouncements.DataBind()

Add/Update

 ...

 Private itemId As Integer

 If Not (Request.Params("ItemId") Is Nothing) Then

 itemId = Int32.Parse(Request.Params("ItemId"))

 Else
 itemId = Null.SetNull(itemId)

 End If

 ...

 ' create an Info object

 Dim objAnnouncement As New AnnouncementInfo

 ' set the properties
 objAnnouncement.ItemId = itemId

 objAnnouncement.ModuleId = ModuleId

 objAnnouncement.CreatedByUser = Context.User.Identity.Name

 objAnnouncement.Title = txtTitle.Text

 objAnnouncement.Description = txtDescription.Text

 objAnnouncement.Url = txtExternal.Text

 objAnnouncement.Syndicate = chkSyndicate.Checked

 If txtViewOrder.Text <> "" Then

 objAnnouncement.ViewOrder = txtViewOrder.Text

 Else

 objAnnouncement.ViewOrder = Null.SetNull(objAnnouncement.ViewOrder)

 End If

 If txtExpires.Text <> "" Then

 objAnnouncement.ExpireDate = txtExpires.Text

 Else

 objAnnouncement.ExpireDate = Null.SetNull(objAnnouncement.ExpireDate)

 End If

 ' create a Controller object

 Dim objAnnouncements As New AnnouncementsController

 If Null.IsNull(itemId) Then

 ' add

 objAnnouncements.AddAnnouncement(objAnnouncement)

 Else

 ' update

 objAnnouncements.UpdateAnnouncement(objAnnouncement)

 End If

 ** Notice the use of the Null.SetNull() and Null.IsNull() helper methods
Delete

 ' create a Controller object

 Dim objAnnouncements As New AnnouncementsController

 ' delete the record
 objAnnouncements.DeleteAnnouncement(itemId)

Business Logic Layer (BLL)

Each application business function has its own physical file which may consist of multiple related business object definitions. Each business object definition has an Info class to define its properties and a Controller class to define its methods.

 Public Class AnnouncementInfo

 ' local property declarations

 Private _ItemId As Integer

 Private _ModuleId As Integer

 Private _UserName As String

 Private _Title As String

 Private _Url As String

 Private _Syndicate As Boolean

 Private _ExpireDate As Date

 Private _Description As String

 Private _ViewOrder As Integer

 Private _CreatedByUser As String

 Private _CreatedDate As Date

 Private _Clicks As Integer

 ' constructor

 Public Sub New()

' custom initialization logic
 End Sub

 ' public properties

 Public Property ItemId() As Integer

 Get

 Return _ItemId

 End Get

 Set(ByVal Value As Integer)

 _ItemId = Value

 End Set

 End Property

 Public Property ModuleId() As Integer

 Get

 Return _ModuleId

 End Get

 Set(ByVal Value As Integer)

 _ModuleId = Value

 End Set

 End Property

 Public Property Title() As String

 Get

 Return _Title

 End Get

 Set(ByVal Value As String)

 _Title = Value

 End Set

 End Property

 Public Property Url() As String

 Get

 Return _Url

 End Get

 Set(ByVal Value As String)

 _Url = Value

 End Set

 End Property

 Public Property Syndicate() As Boolean

 Get

 Return _Syndicate

 End Get

 Set(ByVal Value As Boolean)

 _Syndicate = Value

 End Set

 End Property

 Public Property ViewOrder() As Integer

 Get

 Return _ViewOrder

 End Get

 Set(ByVal Value As Integer)

 _ViewOrder = Value

 End Set

 End Property

 Public Property Description() As String

 Get

 Return _Description

 End Get

 Set(ByVal Value As String)

 _Description = Value

 End Set

 End Property

 Public Property ExpireDate() As Date

 Get

 Return _ExpireDate

 End Get

 Set(ByVal Value As Date)

 _ExpireDate = Value

 End Set

 End Property

 Public Property CreatedByUser() As String

 Get

 Return _CreatedByUser

 End Get

 Set(ByVal Value As String)

 _CreatedByUser = Value

 End Set

 End Property

 Public Property CreatedDate() As Date

 Get

 Return _CreatedDate

 End Get

 Set(ByVal Value As Date)

 _CreatedDate = Value

 End Set

 End Property

 Public Property Clicks() As Integer

 Get

 Return _Clicks

 End Get

 Set(ByVal Value As Integer)

 _Clicks = Value

 End Set

 End Property

 End Class

Each field in the data store should map to a corresponding property in the Info class. To allow the generic CBO helper class to automate the transfer of data from IDataReader to Custom Business Object, the directly related class properties and database fields MUST be identical in terms of Name and DataType.

 Public Class AnnouncementsController

 Public Function GetAnnouncements(ByVal ModuleId As Integer) As ArrayList

 Return CBO.FillCollection(DataProvider.Instance().GetAnnouncements(ModuleId), GetType(AnnouncementInfo))

 End Function

 Public Function GetAnnouncement(ByVal ItemId As Integer, ByVal ModuleId As Integer) As AnnouncementInfo

 Return CType(CBO.FillObject(DataProvider.Instance().GetAnnouncement(ItemId, ModuleId), GetType(AnnouncementInfo)), AnnouncementInfo)

 End Function

 Public Sub DeleteAnnouncement(ByVal ItemID As Integer)

 DataProvider.Instance().DeleteAnnouncement(ItemID)

 End Sub

 Public Sub AddAnnouncement(ByVal objAnnouncement As AnnouncementInfo)

 DataProvider.Instance().AddAnnouncement(objAnnouncement.ModuleId, objAnnouncement.CreatedByUser, objAnnouncement.Title, objAnnouncement.Url, objAnnouncement.Syndicate, objAnnouncement.ExpireDate, objAnnouncement.Description, objAnnouncement.ViewOrder)

 End Sub

 Public Sub UpdateAnnouncement(ByVal objAnnouncement As AnnouncementInfo)

 DataProvider.Instance().UpdateAnnouncement(objAnnouncement.ItemId, objAnnouncement.CreatedByUser, objAnnouncement.Title, objAnnouncement.Url, objAnnouncement.Syndicate, objAnnouncement.ExpireDate, objAnnouncement.Description, objAnnouncement.ViewOrder)

 End Sub

 End Class
You will notice that the Controller methods which send information to the database (ie. Add and Update) pass a Custom Business Object instance as a parameter. The benefit of this approach is that the object definition is isolated to the BLL which reduces the modifications required to the application when the class definition changes. The individual object properties are then extracted and passed as Scalar values to the Data Access Layer (this is because the DAL is not aware of the BLL object structures).

Data Access Layer (DAL)

DotNetNuke supports multiple data stores using a Provider technique explained earlier in this document. Essentially this involves a base class which forwards data access requests to a concrete data access class implementation determined at runtime.

DataProvider (Base Class)

 ' announcements module

 Public MustOverride Function GetAnnouncements(ByVal ModuleId As Integer) As IDataReader

 Public MustOverride Function GetAnnouncement(ByVal ItemId As Integer, ByVal ModuleId As Integer) As IDataReader

 Public MustOverride Sub DeleteAnnouncement(ByVal ItemID As Integer)

 Public MustOverride Sub AddAnnouncement(ByVal ModuleId As Integer, ByVal UserName As String, ByVal Title As String, ByVal URL As String, ByVal Syndicate As Boolean, ByVal ExpireDate As Date, ByVal Description As String, ByVal ViewOrder As Integer)

 Public MustOverride Sub UpdateAnnouncement(ByVal ItemId As Integer, ByVal UserName As String, ByVal Title As String, ByVal URL As String, ByVal Syndicate As Boolean, ByVal ExpireDate As Date, ByVal Description As String, ByVal ViewOrder As Integer)

SqlDataProvider (Concrete Class)

The following helper function is included in the concrete class to isolate the database specific NULL implementation (in this case DBNull.Value for SQL Server) and provide a simplified interface.

 ' general

 Private Function GetNull(ByVal Field As Object) As Object

 Return Null.GetNull(Field, DBNull.Value)

 End Function

Each method marked as MustOverride in the base class must be included in the concrete class implementation. Notice the use of the GetNull() function described above in the Add/Update methods.

 ' announcements module

 Public Overrides Function GetAnnouncements(ByVal ModuleId As Integer) As IDataReader

 Return CType(SqlHelper.ExecuteReader(ConnectionString, DatabaseOwner & ObjectQualifier & "GetAnnouncements", ModuleId), IDataReader)

 End Function

 Public Overrides Function GetAnnouncement(ByVal ItemId As Integer, ByVal ModuleId As Integer) As IDataReader

 Return CType(SqlHelper.ExecuteReader(ConnectionString, DatabaseOwner & ObjectQualifier & "GetAnnouncement", ItemId, ModuleId), IDataReader)

 End Function

 Public Overrides Sub DeleteAnnouncement(ByVal ItemId As Integer)

 SqlHelper.ExecuteNonQuery(ConnectionString, DatabaseOwner & ObjectQualifier & "DeleteAnnouncement", ItemId)

 End Sub

 Public Overrides Sub AddAnnouncement(ByVal ModuleId As Integer, ByVal UserName As String, ByVal Title As String, ByVal URL As String, ByVal Syndicate As Boolean, ByVal ExpireDate As Date, ByVal Description As String, ByVal ViewOrder As Integer)

 SqlHelper.ExecuteNonQuery(ConnectionString, DatabaseOwner & ObjectQualifier & "AddAnnouncement", ModuleId, UserName, Title, URL, Syndicate, GetNull(ExpireDate), Description, GetNull(ViewOrder))

 End Sub

 Public Overrides Sub UpdateAnnouncement(ByVal ItemId As Integer, ByVal UserName As String, ByVal Title As String, ByVal URL As String, ByVal Syndicate As Boolean, ByVal ExpireDate As Date, ByVal Description As String, ByVal ViewOrder As Integer)

 SqlHelper.ExecuteNonQuery(ConnectionString, DatabaseOwner & ObjectQualifier & "UpdateAnnouncement", ItemId, UserName, Title, URL, Syndicate, GetNull(ExpireDate), Description, GetNull(ViewOrder))

 End Sub

Caching

High traffic data access methods use web caching to offset the performance demands of the application by reducing the number of calls required to the backend database. The System.Web.Caching.Cache namespace provides tools to programmatically add and retrieve items from the cache. It has a dictionary interface whereby objects are referenced by a string key. This object has a lifetime tied to the application. When the application is restarted, the cache is recreated as well. Note that only serializable objects can be inserted into the cache.

The ASP.NET Cache also supports features for cache management. In cases where a large number of items could potentially bloat the cache, DotNetNuke uses a sliding expiration scale to remove the items if they have not been accessed for more than a specified number of seconds (configurable by the host). This feature is mainly used in the areas which cache Tab settings.

In DotNetNuke, we have created a centralized DataCache class which exposes some simple methods for managing the application cache.

 Public Enum CoreCacheType

 Host = 1

 Portal = 2

 Tab = 3

 End Enum

 Public Class DataCache

 Public Shared Function GetCache(ByVal CacheKey As String) As Object

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 Return objCache(CacheKey)

 End Function

 Public Shared Sub SetCache(ByVal CacheKey As String, ByVal objObject As Object)

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 objCache.Insert(CacheKey, objObject)

 End Sub

 Public Shared Sub SetCache(ByVal CacheKey As String, ByVal objObject As Object, ByVal SlidingExpiration As Integer)

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 objCache.Insert(CacheKey, objObject, Nothing, DateTime.MaxValue, TimeSpan.FromSeconds(SlidingExpiration))

 End Sub

 Public Shared Sub SetCache(ByVal CacheKey As String, ByVal objObject As Object, ByVal AbsoluteExpiration As Date)

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 objCache.Insert(CacheKey, objObject, Nothing, AbsoluteExpiration, TimeSpan.Zero)

 End Sub

 Public Shared Sub RemoveCache(ByVal CacheKey As String)

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 If Not objCache(CacheKey) Is Nothing Then

 objCache.Remove(CacheKey)

 End If

 End Sub

 Public Shared Sub ClearCoreCache(ByVal Type As CoreCacheType, Optional ByVal ID As Integer = -1, Optional ByVal Cascade As Boolean = False)

 Select Case Type

 Case CoreCacheType.Host

 ClearHostCache(Cascade)

 Case CoreCacheType.Portal

 ClearPortalCache(ID, Cascade)

 Case CoreCacheType.Tab

 ClearTabCache(ID)

 End Select

 End Sub

 Private Shared Sub ClearHostCache(ByVal Cascade As Boolean)

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 If Not objCache("GetHostSettings") Is Nothing Then

 objCache.Remove("GetHostSettings")

 End If

 If Not objCache("GetPortalByAlias") Is Nothing Then

 objCache.Remove("GetPortalByAlias")

 End If

 If Not objCache("CSS") Is Nothing Then

 objCache.Remove("CSS")

 End If

 If Cascade Then

 Dim objPortals As New PortalController

 Dim objPortal As PortalInfo

 Dim arrPortals As ArrayList = objPortals.GetPortals

 Dim intIndex As Integer

 For intIndex = 0 To arrPortals.Count - 1

 objPortal = CType(arrPortals(intIndex), PortalInfo)

 ClearPortalCache(objPortal.PortalID, Cascade)

 Next

 End If

 End Sub

 Private Shared Sub ClearPortalCache(ByVal PortalId As Integer, ByVal Cascade As Boolean)

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 If Not objCache("GetPortalSettings" & PortalId.ToString) Is Nothing Then

 objCache.Remove("GetPortalSettings" & PortalId.ToString)

 End If

 If Not objCache("GetTabs" & PortalId.ToString) Is Nothing Then

 objCache.Remove("GetTabs" & PortalId.ToString)

 End If

 If Cascade Then

 Dim objTabs As New TabController

 Dim objTab As TabInfo

 Dim arrTabs As ArrayList = objTabs.GetTabs(PortalId)

 Dim intIndex As Integer

 For intIndex = 0 To arrTabs.Count - 1

 objTab = CType(arrTabs(intIndex), TabInfo)

 ClearTabCache(objTab.TabID)

 Next

 End If

 End Sub

 Private Shared Sub ClearTabCache(ByVal TabId As Integer)

 Dim objCache As System.Web.Caching.Cache = HttpRuntime.Cache

 If Not objCache("GetTab" & TabId.ToString) Is Nothing Then

 objCache.Remove("GetTab" & TabId.ToString)

 End If

 If Not objCache("GetBreadCrumbs" & TabId.ToString) Is Nothing Then

 objCache.Remove("GetBreadCrumbs" & TabId.ToString)

 End If

 If Not objCache("GetPortalTabModules" & TabId.ToString) Is Nothing Then

 objCache.Remove("GetPortalTabModules" & TabId.ToString)

 End If

 End Sub

 End Class

In terms of interacting with the DataCache object it is best to use a specific syntax for retrieving items from the cache so that your application does not suffer stability problems from threading issues.

 Me.HostSettings = CType(DataCache.GetCache("GetHostSettings"), Hashtable)

 If Me.HostSettings Is Nothing Then

 Me.HostSettings = GetHostSettings()

 DataCache.SetCache("GetHostSettings", Me.HostSettings)

 End If

Performance

In order to measure the performance of the application we used the Microsoft Application Center Test tool which allows you to simulate a large group of users by opening multiple connections to the server and rapidly sending HTTP requests. For comparison, we analyzed DotNetNuke 2.0 (with the new abstract DAL) against DotNetNuke 1.0.10 (using SqlCommandGenerator). Here are the results (special thanks to Kenny Rice for his assistance in running these tests).

DotNetNuke 2.0 (DAL enhancement)

Total number of requests:

93,254

Total number of connections:

93,253

Average requests per second:

310.85

Average time to first byte (msecs):

2.37

Average time to last byte (msecs):

2.46

Average time to last byte per iteration (msecs):
29.58

Number of unique requests made in test:

12

Number of unique response codes:

1

DotNetNuke 1.0.10 (SqlCommandGenerator)

Total number of requests:

42,350

Total number of connections:

42,350

Average requests per second:

141.17

Average time to first byte (msecs):

6.02

Average time to last byte (msecs):

6.15

Average time to last byte per iteration (msecs):
116.94

Number of unique requests made in test:

17

Number of unique response codes:

2

Development

DotNetNuke provides a flexible portal software architecture. The application core provides plumbing services for common functions such as membership, role security, personalization, management, site logging, navigation, and data access. It also provides the ability to extend the application with specific business functionality. In most cases it is recommended that specific business functionality be abstracted from the core and implemented as Custom Modules. This preserves the integrity of the core and provides the best options for future upgradeability. However, if you absolutely must modify the core entities, you are not restricted from making your required changes.

Custom Modules

DotNetNuke allows for Custom Modules to be packaged as Private Assemblies for deployment to portal installations. With only minor modifications, custom modules can leverage the same technique as the core in terms of data access. This provides the added benefit of providing custom module versions for each supported database platform.

Before you move forward with the data access technique discussed below, you need to decide whether or not your component will actually need to support multiple data stores. DotNetNuke does not force you to create your custom modules using the Provider pattern. In fact, if you know your component will only be used on a single database platform, then the additional development effort required is not justified. It is the responsibility of the developer to make these decisions on a case by case basis.

\DesktopModules\Survey

The Survey custom module is architected the same way as the DotNetNuke core. It contains a Business Logic Layer class called SurveyDB.vb which contains the BLL methods. It also contains its own DataProvider.vb class (the fact that it uses its own unique namespace prevents the class name from colliding with the DataProvider class in the DotNetNuke core). In this case the ProviderType constant is set consistently with the ProviderType used by the DotNetNuke core (“data”). This is very important as it allows the concrete data provider to rely on the same configuration settings as the core concrete provider (ie. YourCompanyName.DataProvider will use the same settings from the web.config as DotNetNuke.DataProvider in terms of connection string, etc…).

Imports System

Imports System.Web.Caching

Imports System.Reflection

Namespace YourCompanyName.Survey

 Public MustInherit Class DataProvider

 ' provider constants - eliminates need for Reflection later

 Private Const [ProviderType] As String = "data" ' maps to <sectionGroup> in web.config

 Private Const [NameSpace] As String = "YourCompanyName.Survey" ' project namespace

 Private Const [AssemblyName] As String = "YourCompanyName.Survey" ' project assemblyname

 Public Shared Shadows Function Instance() As DataProvider

 Dim strCacheKey As String = [NameSpace] & "." & [ProviderType] & "provider"

 ' Use the cache because the reflection used later is expensive

 Dim objConstructor As ConstructorInfo = CType(DotNetNuke.DataCache.GetCache(strCacheKey), ConstructorInfo)

 If objConstructor Is Nothing Then

 ' Get the provider configuration based on the type

 Dim objProviderConfiguration As DotNetNuke.ProviderConfiguration = DotNetNuke.ProviderConfiguration.GetProviderConfiguration([ProviderType])

 ' The assembly should be in \bin or GAC, so we simply need to get an instance of the type

 Try

 ' Override the typename if a ProviderName is specified (this allows the application to load a different DataProvider assembly for custom modules)

 Dim strTypeName As String = [NameSpace] & "." & objProviderConfiguration.DefaultProvider & ", " & [AssemblyName] & "." & objProviderConfiguration.DefaultProvider

 ' Use reflection to store the constructor of the class that implements DataProvider

 Dim t As Type = Type.GetType(strTypeName, True)

 objConstructor = t.GetConstructor(System.Type.EmptyTypes)

 ' Insert the type into the cache

 DotNetNuke.DataCache.SetCache(strCacheKey, objConstructor)

 Catch e As Exception

 ' Could not load the provider - this is likely due to binary compatibility issues

 End Try

 End If

 Return CType(objConstructor.Invoke(Nothing), DataProvider)

 End Function

And similar to the DataProvider class in DotNetNuke, it contains the data access methods stubs.

 Public MustOverride Function GetSurveys(ByVal ModuleId As Integer) As IDataReader

 Public MustOverride Function GetSurvey(ByVal SurveyID As Integer, ByVal ModuleId As Integer) As IDataReader

 Public MustOverride Sub AddSurvey(ByVal ModuleId As Integer, ByVal Question As String, ByVal ViewOrder As String, ByVal OptionType As String, ByVal UserName As String)

 Public MustOverride Sub UpdateSurvey(ByVal SurveyId As Integer, ByVal Question As String, ByVal ViewOrder As String, ByVal OptionType As String, ByVal UserName As String)

 Public MustOverride Sub DeleteSurvey(ByVal SurveyID As Integer)

 Public MustOverride Function GetSurveyOptions(ByVal SurveyId As Integer) As IDataReader

 Public MustOverride Sub AddSurveyOption(ByVal SurveyId As Integer, ByVal OptionName As String, ByVal ViewOrder As String)

 Public MustOverride Sub UpdateSurveyOption(ByVal SurveyOptionId As Integer, ByVal OptionName As String, ByVal ViewOrder As String)

 Public MustOverride Sub DeleteSurveyOption(ByVal SurveyOptionID As Integer)

 Public MustOverride Sub AddSurveyResult(ByVal SurveyOptionId As Integer)

\Providers\
Contains the data provider implementations for the custom module. Again you must specify an implementation for its custom attributes defined in the web.config file.

Namespace YourCompanyName.Survey

 Public Class SqlDataProvider

 Inherits DataProvider

 Private Const ProviderType As String = "data"

 Private _providerConfiguration As ProviderConfiguration = ProviderConfiguration.GetProviderConfiguration(ProviderType)

 Private _connectionString As String

 Private _providerPath As String

 Private _objectQualifier As String

 Private _databaseOwner As String

 Public Sub New()

 ' Read the configuration specific information for this provider

 Dim objProvider As Provider = CType(_providerConfiguration.Providers(_providerConfiguration.DefaultProvider), Provider)

 ' Read the attributes for this provider

 _connectionString = objProvider.Attributes("connectionString")

 _providerPath = objProvider.Attributes("providerPath")

 _objectQualifier = objProvider.Attributes("objectQualifier")

 If _objectQualifier <> "" And _objectQualifier.EndsWith("_") = False Then

 objectQualifier += ""

 End If

 _databaseOwner = objProvider.Attributes("databaseOwner")

 If _databaseOwner <> "" And _databaseOwner.EndsWith(".") = False Then

 _databaseOwner += "."

 End If

 End Sub

 Public ReadOnly Property ConnectionString() As String

 Get

 Return _connectionString

 End Get

 End Property

 Public ReadOnly Property ProviderPath() As String

 Get

 Return _providerPath

 End Get

 End Property

 Public ReadOnly Property ObjectQualifier() As String

 Get

 Return _objectQualifier

 End Get

 End Property

 Public ReadOnly Property DatabaseOwner() As String

 Get

 Return _databaseOwner

 End Get

 End Property

Survey.dnn (deployment)

DotNetNuke uses a manifest file for deploying private assembly custom modules. The structure of this file has changed slightly with the addition of multiple providers.
<?xml version="1.0" encoding="utf-8" ?>

<dotnetnuke version="2.0" type="Module">

<folders>

<folder>

<name>CompanyName - Survey</name>

<description>Survey allows you to create custom surveys to obtain public feedback</description>

<version>01.00.00</version>

<modules>

<module>

<friendlyname>CompanyName - Survey</friendlyname>

<controls>

<control>

<src>Survey.ascx</src>

<type>View</type>

</control>

<control>

<key>Edit</key>

<title>Create Survey</title>

<src>EditSurvey.ascx</src>

<iconfile>icon_survey_32px.gif</iconfile>

<type>Edit</type>

</control>

<control>

<key>Options</key>

<title>Survey Options</title>

<src>EditSurveyOptions.ascx</src>

<iconfile>icon_survey_32px.gif</iconfile>

<type>Edit</type>

</control>

</controls>

</module>

</modules>

<files>

<file>

<name>Survey.ascx</name>

</file>

<file>

<name>EditSurvey.ascx</name>

</file>

<file>

<name>EditSurveyOptions.ascx</name>

</file>

<file>

<name>YourCompanyName.Survey.dll</name>

</file>

<file>

<name>YourCompanyName.Survey.SqlDataProvider.dll</name>

</file>

<file>

<name>01.00.00.SqlDataProvider</name>

</file>

<file>

<name>Uninstall.SqlDataProvider</name>

</file>

<file>

<name>YourCompanyName.Survey.AccessDataProvider.dll</name>

</file>

<file>

<name>01.00.00.AccessDataProvider</name>

</file>

<file>

<name>Uninstall.AccessDataProvider</name>

</file>

<file>

<name>help.txt</name>

</file>

<file>

<name>icon_survey_32px.gif</name>

</file>

<file>

<name>red.gif</name>

</file>

<file>

<name>Module.css</name>

</file>

</files>

</folder>

</folders>

</dotnetnuke>
Core Enhancements

Custom modules are the preferred method for adding additional functionality to the portal architecture. However, it is sometimes necessary to modify the core functionality to meet your specific needs as well. In order to make data access modifications to the core you must have a basic understanding of the object oriented programming principles governing the Provider model.

In theory, the Provider model uses a Factory design pattern which allows a base class to defer instantiation to subclasses. In implementation, the DataProvider class acts as a base class which defines all of the core data access methods for the application. All methods are defined as Public MustOverride which means they simply act as stubs and have no implementation included in the base class.

The DataProvider class acts as a contract which any subclass must implement completely or else object instantiation will fail. What this means is if a base class MustOverride method is modified in terms of parameter list or return value, then all subclass implementations must also be modified to reflect this modification or else they will fail to load correctly. Failing to load correctly does not simply mean that a call to that specific method will fail but, in fact, actual instantiation of the subclass will fail entirely. This contract mechanism instills a degree of fragility into the application but also ensures that each subclass meets a minimum criteria level in terms of implementation.

As an example which demonstrates the steps involved in extending the core, we will assume we are adding a new Field to a core Table.

1. If necessary, change the Presentation Layer to display/edit the new field

2. Modify the associated Business Logic Layer (BLL) class to add the Field to the necessary methods (typically AddTable, UpdateTable)

3. Update the DataProvider base class with the necessary changes from Step #2 and recompile the application.

4. Update each DataProvider subclass implementation (ie. SqlDataProvider, AccessDataProvider) with the necessary changes. Recompiling the applicatioin will reveal any discrepancies between the base class and implementation. The number of implementations which need to be modified is dependent on the number of different databases your application supports.

5. Update each DataProvider subclass implementation script with the specific database alteration commands (ie. ALTER TABLE). In the case of database providers which use stored procedures, the new versions of the stored procedures must be scripted as well (with associated DROP and CREATE commands).

SqlCommandGenerator

Earlier versions of DotNetNuke contained a class called SqlCommandGenerator which simplified the effort of calling your SQL Server / MSDE database. The problem with the SqlCommandGenerator is it used Reflection on every database call which imposed a serious performance penalty on the application. This class has been retained for legacy purposes but Custom Module developers are encouraged to migrate to the DataProvider model for obvious reasons.

Credits

Rob Howard from the Microsoft ASP.NET team supplied a great deal of mentoring / sample code for implementing the DataProvider model (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspnet/html/asp02182004.asp) . The .NET Pet Shop 3.0 also provided some excellent reference material. The Microsoft Data Access Application Block was instrumental for rapid development of the SQL Server Provider implementation.
Copyright © 2002-2003- – DotNetNuke – All Rights Reserved

C:\Transfer\DotNetNuke Data Access.doc

[image: image2.png]_1129546106

