	[image: image6.png]

	http://www.dotnetnuke.com/
	Page 11 of 19

	
	DNN Development Process
-- DRAFT --
	Date: 7/23/2003
Author: scott.willhite

DotNetNuke
Development Process

– DRAFT –
For Discussion Purposes Only

Revision Log

	Revision
	Date
	Author
	Comments

	0.0
	July 23, 2003
	Scott Willhite
	Original Draft

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
3Introduction

What’s in this document?
3
What’s NOT in this document?
3
Important Things to Consider
4
What’s a Release?
4
How Often Should Releases Happen?
4
Release Schedule
5
Where Should Releases Be Available?
6
Bugs versus Enhancements
6
Some Enhancement Guidelines
7
Preserving the Codebase
7
GotDotNet Source Control
7
Build Master
8
Checking In Files
8
Bug Tracking & Assignments
8
List Integrity
8
Public versus Private Forums/Logs
9
BugMaster
9
Standards
9
Coding Guidelines
9
Architecture Guidelines
9
Module Development Guidelines
9
Documentation Guidelines
9
Testing Guidelines
9
Who’s Who In This Process?
10
Benevolent Dictator
10
Release Manager (and Development Manager)
10
Build Master
10
Bug Master
10
Analyst
10
Core Team (members)
11
DNN Community
11
What’s In the Process?
12
Bug Report/Enhancement Request
12
Analysis (Major Enhancements, New Features, Architecture)
12
Release Management
12
Application Development
12
The High Level Flow Diagrams
13
Some Q & A
17
Why do we need a development “process”?
17
The Weaknesses of Open Source as they relate to DNN
17

Introduction

Don’t let the length or detail of this document intimidate you. You may be tempted to interpret “process” as negative, and indeed it CAN be if it is abused. However, documenting a process that provides for adaptation, with just a few key control points, can really increase the quality of a software product and help keep everyone in the loop about how things get done.

The purpose of this document is to lay out a high level development process that introduces key concepts, provides adequate quality control and allows for innovation/creativity.

What’s in this document?

This document contains a high level process flow and associated definitions. It identifies the basic responsibilities of a few different roles and identifies some basic control points and provides rationale for them. It also provides a guideline for the basic “order of events” in the lifecycle of a release, helping everyone to be on the same page in terms of “what happens next”?
What’s NOT in this document?

This document does not tell you exactly what to do, exactly who should do it, exactly when it should be done, or exactly how. Most of these kinds of questions are best left to practical experience. They have to be made in light of the people working on the project, the tools available and, frankly, peoples preferred working styles and innovative ideas.
Important Things to Consider

The following topics, in no particular order, were driving factors in preparation of the proposed development process.
What’s a Release?

The question constantly rises, “when is the next release”? Before answering the question, it is important to consider what is really meant by the individual asking. Are they looking for fixes to known bugs? Are they looking for the next “mature” version of the product? Are they looking for quick adoption of new features (before they are demonstrated as mature)?

Let’s define release for DNN as follows:

· Mature Release:
These are what we currently have. These are releases which contain the entire project, come out periodically and have solid installation packages, documented release notes, follow the roadmap, etc. They have undergone peer review, been through extensive testing and represent the core of what DNN delivers.

· Beta Release:
A candidate for mature release that is available to the for community testing.

· Service Pack:
A service pack would represent cumulative bug fixes and MINOR enhancements that have been developed between mature releases. Every service pack would be cumulative (that is containing all previous service packs). Additionally, service packs should consist ONLY of those files changed, intended to be installed on top of the prior release. Service packs should NOT have to have backwards compatibility with any version other than the one they were developed for. This allows for QUICK fixing of bugs, etc. to the current mature release.
· Development Release:
For the adventurous! And there are many adventurers out there! The development release is intended to “pilot” major enhancements (such as skinning, multi-language, architectural changes, etc). They are essentially “branches” off of the current mature release that are targeted to be brought into another specific future release (either the next one or another in the near future). There may be a number of these releases available at any one given time, depending upon how many approved “major enhancement” development threads are underway. Note that a development release MUST always use the most recent Mature Release (plus Service Packs) as its base.

Both XXL and ML could currently be considered as Development Releases.

As a caveat, the community should be made to understand that Development Releases are NOT Mature Releases. Although it is likely that upgrade paths will be stable, there may be some risk (or added complexity) in upgrading from a Development Release.
How Often Should Releases Happen?
This point receives a lot of discussion. Releases should be frequent enough to keep the community satisfied, but infrequent enough to (a) keep the core team from getting burned (out) to a crisp, and (b) to provide a stable production environment for DNN installations (they shouldn’t have to upgrade frequently).

Here is a recommendation:
· Mature Releases: Every 3 to 4 months
People often talk about “quarterly” releases. In my experience these almost NEVER happen, or if they do they are flawed. Quarterly release schedules ALWAYS have a nasty habit of falling on holiday periods, during prime vacation periods, near start or end of school year, etc. While the premise of releasing each quarter is good, it is often more practical to commit to 3 major releases each year, allowing some flexibility in setting the release dates. If quarterly is stated, folks will assume release dates of 1/1, 4/1, 7/1, 9/1. And NOBODY wants to spend Christmas Day debugging an installation script.

· Service Packs: As Needed
These are to keep the community happy and quality high! They should happen as quickly as possible with adequate testing and require little oversight after preliminary screening of the bug report.
· Beta Releases: Approximately 1 month before Mature Release
In order to minimize the number of Service Packs that NEED to be created, and to increase the overall public satisfaction with Mature Releases, release candidates should go through a Beta testing period. This period needs to be long enough to allow for folks (outside the core team) to install it, try it, report issues and then for those issues to get resolved and the package recreated. If the Beta goes well (few problems in the first couple of weeks) then the Mature Release can beat its scheduled release date!

· Development Releases: No more than once/month (per development thread)
Development Releases are, in a way, beta tests for implementation of major features. They are a PART of a planned Mature Release that needs more of a public workout, but should NOT be perceived as the main thread of development. Even at this pace, there should be ample opportunity for a development thread to release at least 2 versions before it needs to get pulled back into the current Mature Release thread. If it needs more than that, it likely should be part of a LATER Mature Release.
Release Schedule

When does work on a release begin? It is an important concept to understand that releases do not need to be “single threaded”. That is that, considering that the release scheduled for 6 months out has substantial enhancements that work on those enhancements may be going on now. The following diagram might make more sense.

[image: image1.emf]2.0 Released

Service Pack 2.1

Development starts on 3.0, with 2.0 base

Development starts on 4.0, with 2.1 base

3.0 applies 2.1 Service Pack

2.0 thread

3.0 thread

4.0 thread

3.0 Released

4.0 applies 3.0 base

Service Pack 3.1

4.0 applies 3.1 Service Pack

The only caveat to the process is that this development thread will have to keep up with current changes and ultimately shift its base of implementation to that of the preceding release (and service packs).

Where Should Releases Be Available?

All “official” downloads of DNN Releases and/or Service Packs should be through www.dotnetnuke.com and/or approved mirror sites. Any other download DNN installs should be considered “renegade releases” and treated as such. It is important that the core team support the core team process, otherwise all efforts will be invalidated and our trustworthiness tarnished. If we want “DNN Certified” to mean something, we need to start at home.
Bugs versus Enhancements

We need a common understanding of what a bug is versus what an enhancement is. Basically a bug is something that is not working as intended… it’s “broken”. Just because someone may not LIKE how it works doesn’t make it a “bug”. Often, bug reports can be avoided by providing adequate documentation as people will report behavior they don’t understand (because it is undocumented) as a bug.
Often, we get requests for bug fixes which are really enhancements. Performance issues such as column indexes are not really bugs because things are working correctly (albeit not as efficiently as possible). Applying a missing index would be an example of a minor enhancement.
It is important to differentiate bugs and enhancements in terms of deciding how and when to address things. Bugs should be available for anyone to fix, right away, for inclusion in the next Service Pack. Many minor enhancements will also fit into this category, although they should be briefly discussed before being included. More major enhancements require more discussion as they affect the direction of the product as well as plans for the release currently in progress.

Some Enhancement Guidelines

Some enhancements require some discussion, others don’t necessarily. Here are a few random guidelines.

· Any enhancements which affect user experience should require some discussion first. Amount of discussion should be commensurate with nature of change (i.e. don’t discuss little stuff to death).
· Enhancements which do NOT affect user experience and that CONFORM to current architecture should not require discussion. For example, applying new column indexes should not require a lot of discussion, however adding a layer of abstraction, creating additional tables or columns, etc. should be discussed prior to implementation.
· If it adds functionality that was not there before, it’s not an enhancement it’s a new feature. It should be discussed at length, complete with requirements, high level design and alternatives.
· Architectural changes should be treated similarly to new functionality.
Preserving the Codebase

While the codebase is read/write only for the core team, the general public has read capability and so it is important that the codebase remain clean and well documented.

GotDotNet Source Control

The source code management facilities at GotDotNet have some inherent limitations that mean extra care is required in maintaining it. Specifically it does not provide for:
· Labeling ~ The ability to apply a label to each version of a file so that a specific version can be extracted from a single codebase. Labeling functions are going to have to be accomplished by assembling versions manually OUTSIDE of the GotDotNet workspace and packaging them as separate releases. Each development thread team will have to control this for themselves, via a “Build Master” (discussed later).

· Branching ~ The ability to create a secondary branch of development from the same file (think bug fix while an enhancement is in progress) which might be later merged. This is going to require a manual process of announcing bug fixes to the group that must be manually incorporated into all other development threads. This will mean that a “regression test” will be required for all Beta Mature Releases which re-validates the elimination of bugs established in the Service Packs.
The ramification of this is that some source code control is going to need to be done by hand outside of GotDotNet. This should not present a major problem as this is the development method we have all been employing since the beginning. It is recommended, however, that a team working on a separate development thread utilize some additional source code control (such as Visual Source Safe) for it’s intermediate development needs.
Build Master

Every Release (or major development thread) should have a “Build Master”. This is the person on the team responsible for coordinating source control within the team working on that thread and the other threads of development. They will also be the ones responsible for ensuring that the code meets project standards (coding & testing) and, ultimately, checking that source into the GotDotNet repository.

It might be wise to designate an overall “Build Master” for DNN to ensure the integrity of the codebase although this could be considered one of the responsibilities of the Benevolent Dictator. This role is discussed in more detail in a following section.
Checking In Files

Because of the limitations of our tools and the need to preserve the sanctity of the codebase, we need some procedural guidelines here. The following guidelines are recommended.
· No file should be checked in without having passed a code review. This code review may be self administered (in the case of bug fixes) or consist of peer review for more substantial enhancements. Specific rules will evolve through the community, however it should include things like:
· Passing FxCop rules

· Correct use of architecture

· Length of procedures

· Adequate documentation

· Etc.

· Every file checked in should include a formatted comment which includes the specific bug tracking number(s) addressed in the update as well as a brief summary of the substance of the changes made.

· Code should be checked into GotDotNet only under the following circumstances:
· Bug fixes ~ Any developer may apply a fix for a minor bug. Major bugs will be assigned to specific developers or teams.

· Releases ~ Approved Mature Releases (including Beta, but NOT Development Releases or beta release candidates).
Bug Tracking & Assignments

Solid bug/enhancement/feature tracking is ESSENTIAL to our success. There are several characteristics of a solid mechanism for performing this function.
List Integrity
The assignment and status of items on the lists must be current, reliable and complete. Entries must be reviewed for validity on submission before being considered for implementation. Often, requests for fixes or enhancements are due to a lack of understanding of functionality or may be out of synch with the roadmap for the project. Once an item has been validated it can then be addressed (for a bug fix), assigned to a release, or assigned to a team.
Public versus Private Forums/Logs
Lists should be uncluttered for developers. Depending upon the features of the tools this can be accomplished with one or multiple lists. Adequate sorting, based on criteria such as author, assigned, status, etc. should keep development teams focused without the clutter of (literally) thousands of entries. However, some facility for PRIVATE entries must also exist (i.e. a list for entries that is not viewable by the public) to facilitate fixing of sensitive items like security bugs.

BugMaster

DotNetNuke needs a BugMaster. The BugMaster has ultimate responsibility for ensuring the integrity of the bug list, interacting with the various development threads for status, tracking of items in Release Notes, etc. This role is discussed in more detail in a following section.
Standards

Coding Guidelines

These are most important for the core team, but should be applicable to module developers as well. These guidelines will include quantitative items such as variable naming, lengths of procedures, object orientation, comments, use of existing architecture, etc.
Architecture Guidelines

Documentation should be in place to describe the functionality and usage of currently available architecture (things like PortalModuleControl). Guidelines should be in place for appropriate usage (e.g. what properties are available and what they mean) and extension of the architecture as well. For example, if a core abstraction layer is introduced, the proper method for extending the core (through inheritance) should be documented.

Additionally, the DotNetNuke Roadmap should serve as a guideline for future architecture direction.
Module Development Guidelines

These guidelines should help module developers understand how to capitalize on the implementation of modules within DNN (including detailed understanding of the ModuleDefinition table, permissions, etc). They should also address structuring of a project (e.g. Joe Brinkman’s current documentation) and a published structure for .dnn files for installing PA’s.
Documentation Guidelines

Documentation should begin to adhere to a common format. Release notes should always look the same, module comments should be formatted consistently, headers, footers and revision logs should be used.
Testing Guidelines

Testing by the core team developers would occur as normal. However, for testing of release packages certain repeatable standards should apply as well as guidelines for upgrading from prior versions. These guidelines would probably consist of a set of defined testing scenarios and some guidelines on how to conduct public beta tests.
This would include specific requirements for the module certification process, were one to be developed.
Who’s Who In This Process?

Benevolent Dictator

The Benevolent Dictator is (for our US participants) like the President. He is the ultimate decision maker and has authority to assign (or appoint) personnel and delegate temporary authority as needed. He retains veto power over any decision, though likely uses that power sparingly!

Ultimately this role is responsible for ensuring that the progress of DNN stays consistent with the roadmap and that quality standards are met. Decisions of the Benevolent Dictator are final.
Release Manager (and Development Manager)
This role is appointed by the Benevolent Dictator and has ultimate responsibility for the production of a release (or development of a feature). This will involve agreement on several key variables including:

· Exactly what is targeted to be in the release (including tracking numbers)
· Preliminary scheduled release date

· Who will be responsible for playing the role of Build Master (key role)

The Release Manager will be responsible for assembling their team (which may contain any number of current team members) and the Benevolent Dictator may assign additional resources to the team if he deems it appropriate (for learning, quality assurance or whatever). Teams should be well rounded, for example including someone from each impacted area.

The Release Manager will be the primary interface between the rest of the release team and other teams. It will be their responsibility to ensure that the planned content of the release is complete (including regression testing service packs in their base code), that the release has been adequately tested (for install, upgrade & functionality) and that proper standards have been applied to the release.

Build Master

The Build Master is responsible for managing the source of the release (outside of GotDotNet) and for checking the final release code into the codebase (with appropriate comments). During development, they are responsible for assembling various code changes, database enhancements, etc. into a coherent release package. The Build Master also keeps the team in synch with any Service Packs that are applied to the teams’ base code.
Bug Master

The Bug Master is a key project role that interfaces between the open DNN community, the Benevolent Dictator and the various Release Teams or ad-hoc bug fixers. It is their responsibility to keep the enhancement list under control, both in terms of items submitted as well as items delegated and their status. The Bug Master will work with the Release Manager to ensure that release notes are complete.
Analyst

The analyst is an ad-hoc role appointed by the Benevolent Dictator to investigate an item (architecture enhancement, new feature, major enhancement, etc). It is the job of the analyst to clearly identify the scope of the item, it’s value to the community (first) and facilitate group discussion of the subject. If value is deemed sufficient, the analyst (or another) may then be charged with investigating the technical options, assessing impact and making a recommendation. This recommendation would serve as the basis for further discussion amongst the team and a final decision rendered by the Benevolent Dictator.
Core Team (members)

Core team members are the pool from which all other roles are filled. This process focuses primarily on development, but it also includes those working in administrative, documentation, business and other capacities. All core team members participate in the collaborative decision making process (though the Benevolent Dictator is the decision maker).
Developers work with their release manager and Build Master to create release packages. They can also, independently, take items from the approved bug list to fix.
DNN Community

The community needs to be considered as a team role because of their importance in our communications strategy and their roles in submitting requests and assisting in the beta testing processes.
What’s In the Process?

Each of these processes is part of a whole which describes how items go from concept to delivery.

Bug Report/Enhancement Request

This is the part of the process by which a request goes from being made to being addressed. Requests may go directly to development (in the case of minor bugs), be assigned to a specific release (in the case of major bugs, minor enhancements) or be assigned to an analyst for further research and sponsorship within the group (new features, major enhancements, architectural changes).
Analysis (Major Enhancements, New Features, Architecture)

This is the part of the process by which the core team makes collaborative decisions and interacts with the community regarding plans, decisions and release targets.
Release Management

This is the part of the process by which the integrity of releases is ensured. It begins with the appointment of a “Release Manager” and concludes with distribution of the release. It involves checkpoints for quality control (outside of coding practices).
Application Development

This is the part of the process by which coding is integrated into the other processes. It describes the way in which a development team and build master integrate with the rest of the process.
The High Level Flow Diagrams
The following four diagrams represent the basic flow of effort in the development process.

[image: image2.emf]Bug Report/Enhancement Request

Bug Master Core Team

Benevolent

Dictator

DNN Community

Public Bug Report

or Enhancement

Request

Request Filter

New Item?

Duplicate request

updated with ID of

existing request

No

Minor Bug?

Yes

Yes

Minor bugs go

directly to

(Development)

Major Bug /

Minor Enh

No

Yes

No

New Feature

/ Major Enh

Assign analyst

from the

core team

Yes

Seek clarification

from original

author

No

New Features and

Major Enh go to:

(Analysis)

Non-public bug /

Enhancement

Tracking List

Assign Release

Manager

(Release)

[image: image3.emf]Analysis (Major Enhancements, New Features, Architecture)

DNN Community

Benevolent

Dictator

Analyst Core Team

Write clear

description and

value proposition

for discussion

Discuss value, fit

and priority

(collaborative

decisioning)

Accept / Reject

Summarize

Analysis &

Decision for

community

(answer questions)

Posted summary

Reject

Summarize

alternatives,

analyze impact,

recomendation

Accept

Discuss

alternatives

(collaborative

decisioning)

New Features /

Major Enh go to

new: (Release)

Design Decision,

Assign Release,

Assign Team

Posted summary

Prepare public

summary

[image: image4.emf]Release Management

DNN Community Core Team

Release Manager

(Build Master)

Benevolent

Dictator

Identify Release

Manager (for each

major release or

dev release)

Confirm Content,

Date, etc.

Assemble Team

(may include ad-

hoc members/

volunteers)

Establish baseline

install for release,

assign tasks

Establish release

test plan, establish

code freeze date

(only bugs after

that)

Prepare Release

Package

Test on multiple

versions

Release (Beta,

Development)

Feedback on

installation

process and

release quality

Mature Release

Coding & unit

testing

(Development)

Bug/install fixes

& unit testing

(Development)

Note that this step may

entail the assemblage

of more than one area

of development (for

mature releases) -- Dev

releases are for specific

components/

enhancements but

mature releases will

may include more than

one.

It might also be farmed

out to someone other

than the release

manager themselves.

Check in updated

code, validate

build from source

Approve

Release

No

Identify Release

Candidate

Yes

Assign Version

Number

[image: image5.emf]Application Development (Enhancement, Bug Fix, Architecture)

DNN Community Bug Master

Build Master

(Current Release)

Core Team

Minor Bug?

Code & Unit Test

Analyze for

standards

compliance

No

Service Pack

Release

Update internal &

public logs

Item for Current

Release Notes

Load baseline

install set by Build

Master (release +

svc packs, etc)

Yes

Notify impacted

team members of

changed files

Prepare Release

Package

(incremental,

additive from other

service packs)

Code & Unit Test

Analyze for

stanrdards

compliance

Check In Code

Analyze bug,

identify fix, THEN

check out code

Prepare Release

Package

(Release)

Some Q & A

Why do we need a development “process”?

The Weaknesses of Open Source as they relate to DNN
Despite the great power and possibilities of Open Source, there are some inherent weaknesses in it. The following points are borrowed from the Masters Thesis of Gregor Rothfuss (University of Zurich) who has compiled some interesting thoughts on the matter. I’ve boiled these down into a few DNN specific thoughts.

Communication

As has been pointed out, we have MANY different communication vehicles and none of them are well organized. We can do whatever we want, but there must be a few very specific and controlled points of communication that will help to coordinate project control.
· Bug/Enhancement List ~ the list, and the data in the list, must be reliable. This includes assigned ownership, target release for implementation,
· Important Announcements ~ a MUST READ list that is accessed only for HIGH PRIORITY information (e.g. release candidate ready for download, open call for design review, high-priority bug announcement, etc.)
Additionally, this should consider EXTERNAL as well as INTERNAL communication. Our communication with the forums is leaving many people confused as to official versions, release plans, feature plans, etc.

· All references to features, schedules, etc. (in the forums or elsewhere) should reference the appropriate documentation provided at www.dotnetnuke.com. Our voice in the community is too splintered.

· Any downloads that we personally make available should be properly labeled as private contributions or versions.
Redundant Efforts/Missed Opportunities
With the advent of teams and assignments from the bug/enhancement list we should hopefully begin to get around some of this. Work packages should be assigned and things should not be lost between the cracks. There is nothing wrong with more than one group working on a problem/enhancement as long as everyone is aware of it. There are a few classifications of examples to consider.
· Minor Bugs ~ (actual errors, not tweaks) should be fixed as quickly as possible. These should be able to be grabbed by anyone and fixed immediately. Note that this assumes limited impact, if the bug has extensive impact it should be assigned before being available to be fixed.
· Major Bugs ~ (actual errors, not tweaks) are those that have significant impact in fixing (i.e. affect a number of components/pages, may introduce other risks, etc).

· Minor Enhancements ~ should be assigned owners who will coordinate the work (coding/testing) of their group.

· Major Enhancements ~ should be assigned owners who will provide DESIGN OPTIONS for discussion before any coding begins. Major enhancements should be well thought out and reviewed before implementation. Consider the various skinning methods available and which will be used.
· Architectural Changes ~ treated the same as major enhancements.
Lack of Priorities

Projects are hard to manage even under formal authority. This is a key area where many Open Source Projects fail… a benevolent dictator is required. There will always be competing priorities for schedule, features, design decisions, architecture decisions, etc.

Group discussion should be encouraged and consensus always sought, but ultimately the group needs to go with the decisions of those that are in relevant positions of leadership (like owners of particular items) with veto power always going to the benevolent dictator.
Lack of Conventions

This includes processes, standards, knowledge of the code, etc. In order for an Open Source Project to be widely successful it MUST publish and make it easy for (new) members to contribute. This will mean publishing several things clearly:
· Release Schedule (and status) ~ with targeted bug fixes, enhancements, etc.
· Submitted bug/enhancement list ~ with public access.

· Module development standards ~ how to structure PA’s, coding standards, tools enforced (e.g. FxCop)

· Public API ~ Publish documentation about usage of public classes.

· Publish series of “How to’s” for non-programmer users of DNN.

For the core team, these things also:

· Architectural (as well as functional) roadmap ~ where we will take the architecture of the project in future releases. This will essentially be forward vision regarding class and project organization, abstraction layers, assembly signing, etc.

· FEATIRE REQUIREMENTS and DESIGN OPTIONS ~ Before we tackle major enhancements, we should begin tossing around more ideas about WHAT features to implement. And THEN, HOW to implement those features. Again, skinning is a great example because of the many ways in which it can be done. This will save valuable time for our experienced coders and provide much better information for folks anticipating future releases when decisions are made.

Lack of Focus

Fortunately we have a lot of dedicated contributors in the DNN core team. However, most of us also still have real jobs and families and therefore limited time to commit to DNN. By assigning tasks of fixed scope (e.g. a small set of bugs, one enhancement) and establishing reasonable release schedules (good planning) we should be able to avoid burning anyone out or overtaxing any specific individual.
Dependency on Key Persons

There are various reasons why people become “key persons”, but one of them is detailed knowledge (gained from exposure). This can be made up for to some degree by documentation! While nobody wants to get paper heavy, there should always be SOME documentation of basic design, installation & configuration of any change (as well as the core system).

The more complex (or sophisticated) an application becomes, the harder it is to reconstruct the implicit knowledge of individuals from their artifacts alone (code, emails, etc). How many emails do we see asking for instructions on how to use features?

Leadership

This is probably the only are in which we have everything all together. We have a committed respected leader in the community.

Copyright © 2002-2003 – DotNetNuke – All Rights Reserved

C:\DNN\DNN Dev Process -- DRAFT 1.0.doc

[image: image6.png]