	[image: image1.png]



	http://www.dotnetnuke.com/
	Page 1 of 8

	
	DotNetNuke Exception Handling
	Date: 1/13/2004
Author: dan.caron



Introduction

Before the launch of DotNetNuke 2.0, DotNetNuke did not provide any exception handling functionality.  When a method failed, the portal page was never seen and instead, the standard ASP.NET exception page is displayed (the amount of detail is based on the web.config CustomErrors setting).Definitions

Ideal Solution

The ideal solution is one that allows for all successfully rendered modules to display normally, and failed modules should be replaced with an error message.  The error message should be displayed in the exact location that the module would have displayed.  In addition, all exceptions should be logged to a file.  We should be able to create multiple types of exceptions and log each one independently.  For instance, one type of exception would represent a module that failed to load.  This exception would be logged to a log file using XML.  Another type of exception would represent a security exception.  This type of exception should be able to be logged to XML as well as having an email sent to an administrator.  Custom exception types should be able to be implemented by custom module developers as well.

Implemented Solution

The solution utilizes the Microsoft Exception Management Block as the exception processor.  It is responsible for establishing a framework for exception handling which custom exception publishers can be implemented with.  The Exception Management Block will be compiled into a private assembly.

The Exception Management Block is configured from within the web.config file.   There are two elements that need to be added to web.config.   These elements have already been added to the DotNetNuke 2.0 or greater web.config file.  The first new element (configuration/configSections/section) defines the existence of the second element (/configuration/exceptionManagement).

<configuration>

  <configSections>

    <section name="exceptionManagement" type="Microsoft.ApplicationBlocks.ExceptionManagement.ExceptionManagerSectionHandler,Microsoft.ApplicationBlocks.ExceptionManagement" />

  </configSections>

  <exceptionManagement mode="on">

    <publisher assembly="DotNetNuke" type="DotNetNuke.XMLExceptionPublisher" include="*" exceptionFormat="xml" fileName="Exceptions.xml" />

  </exceptionManagement>

</configuration>

The publisher element above is especially interesting.  It defines the assembly to use for exceptions.  It is also where you specify the type of exception publisher to use and for which exception types to use it.  In the example above, we are catching “*”, which represents “all” exception types, and outputting them to the fileName specified.   We could add another publisher element and have it handle another exception type differently, perhaps using email as a notification rather than logging to an XML file.

It is within web.config that you define the filename for the log file(s).  Since XCOPY deployment of DotNetNuke doesn’t support setting permissions on folders or utilizing files outside of the virtual directory, the XML log file will, by default, exist in the “/Portals/_default/Logs” directory within public accessibility.  For this reason, the log file should not be defaulted to a static filename (i.e. “ErrorLog.xml”).  This would make it easy for a hacker to obtain the exception log and determine the portal’s vulnerabilities.  However, since the filename is stored in web.config, the DNN application would need WRITE access to web.config in order to programmatically change the name of the log file to a unique filename (to make it less easy to discover by guessing the filename).  Since requiring write access to web.config is problematic and generally not a great security practice, the filename is defaulted in web.config to be “exceptions.xml”.  Since the file name, by default, is static and known, it exposes a security vulnerability if left unchanged. Therefore, in global.asax.vb, in the Application_Start() method we will check web.config for the the value of the filename.  If the filename is “Exceptions.xml” during the upgrade, it attempts to change it and save web.config.  If this process fails (probably due to write permissions being disabled), it will write out a log entry to Exceptions.xml which notes that the filename in web.config for exception logging should be changed immediately.  This happens after the entire DotNetNuke upgrade process has completed, if it ran.  For this reason, exceptions that are found prior to this process will be logged to the Exceptions.xml file…until the filename is changed in web.config. If the DNN application successfully saved web.config, the file will be named Log-[GUID].xml, where GUID is a new GUID generated when it updates web.config.  This will help to prevent hackers from browsing to a known log file name.  If a developer changes the fileName attribute to an absolute file path, the log file can be stored outside the virtual directory and therefore would be unavailable to casual hackers altogether.

There are five new components:

1. Exceptions.vb

2. ModuleLoadException.vb

3. PageLoadException.vb

4. XMLExceptionPublishervb.vb

5. EmailExceptionPublisher.vb

Exceptions.vb – This component contains two public classes and a public module.

a. Public Module Exceptions

This module exposes an overloaded ProcessModuleLoadException method that encapsulates the functionality of processing an exeption of type ModuleLoadException.  This is the single call made within a Catch block to process the error.  It is responsible for instantiating the Log Publisher and also for generating and rendering the error message to the screen.

b. Public Class BasePortalException
This class contains a class that inherits from BaseApplicationException.  The BasePortalException class will be inherited by any custom exception types.  It establishes these common properties that will be populated for all exceptions:

1. AssemblyVersion (version of assembly)

2. DatabaseVersion (version of database)
3. PortalID (id of portal)
4. UserID (id of user)
5. ActiveTabID (id of active tab)
6. ActiveTabName (name of active tab)
7. AbsoluteURL (url)
8. AbsoluteURLReferrer (http referrer)
9. InnerExceptionString (xml representation of stack trace)
c. Public Class ErrorContainer
This class exposes overloaded methods for formatting the error.  It includes a check for the SuperUser so the SuperUser gets a detailed exception stack trace message displayed on error, and the other users get a simple message displayed that specifies that the module has encountered an error.

ModuleLoadException.vb – This component contains a custom exception type that is specific to DotNetNuke.  It is one public class (ModuleLoadException) that inherits from BasePortalException.  This class establishes these properties to be logged with this type of exception (in addition to the properties of BasePortalException):

1. ModuleId (id of the module)

2. ModuleDefId (id of the module definition)
3. FriendlyName (name of the module)
4. ModuleControlSource (filename of the .ascx)
PageLoadException.vb – This component contains a custom exception type that is specific to DotNetNuke.  It is one public class (PageLoadException) that inherits from BasePortalException.  This class adds no additional properties onto the BasePortalException, but serves as a means of tracking the types of errors that are found, and allows us to handle PageLoadExceptions differently from ModuleLoadExceptions.
XMLExceptionPublisher.vb –This component contains the XML exception publisher.  It implements IexceptionXmlPublisher which is an interface of the Exception Management Block.  This class is responsible for opening up an XML file and writing an exception to it.  

EmailExceptionPublisher.vb –This component contains the Email exception publisher.  It implements IexceptionXmlPublisher which is an interface of the Exception Management Block.  This class is responsible for emailing the contents of an exception to an email address specified in the web.config elements defined for the exception handling.  The publisher uses the SendNotification method of DotNetNuke to send the exception via email.  This class is included, but not implemented in the default install.  It can be implemented simply by adding a publisher element to web.config.

The additional line in web.config would look like this one below in color:

<exceptionManagement mode="on">

<publisher assembly="DotNetNuke" type="DotNetNuke.XMLExceptionPublisher" fileName="Exceptions.xml" include="*" exceptionFormat="xml" />
<publisher assembly="DotNetNuke" type="DotNetNuke.EmailExceptionPublisher" include="*"/>
</exceptionManagement>
How an exception is caught

Module Exceptions

Exceptions generated from a DNN module are caught in the presentation layer’s events using try/catch (for MyBase.Init, MyBase.Load, myButton.Click, etc…all events implemented).  By catching the exception here, any exceptions downstream of the event causes the exception to be bubbled up and caught in the presentation layer.  This negates the need for try/catch in the BLL or DAL.

Below is an example of catching an exception:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

Try



BindData()

Catch exc As Exception



ProcessModuleLoadException(Me, exc)

End Try

End Sub

The Load event contains a try/catch around BindData(). This means that any exception thrown from BindData() or any of its offspring also will be caught in the Load event.  In this example, BindData() does not need try/catch to handle the exception since its exception will be bubbled up to the Page_Load method.

Also, some non-event methods that are called from within the .ascx or .aspx may need try/catch as well.  For example, if within your .ascx you call a method that’s in your code-behind that is called “’FormatMyDate ()”.  In your .ascx, you may have code that looks like this:

<asp:Label ID="lblDescription" Runat="server" CssClass="Normal" 
text=”<%= FormatMyDate(yourDate)%>”/>

If “YourDate” cannot be converted to a date, then the “FormatMyDate()” method will throw an exception, and that exception should be caught with an additional Try/Catch in the FormatMyDate() method.  The exception won’t be bubbled up to Page_Load because it was not called from Page_Load, it was called from the .ascx directly.

OPTIONAL: You can provide a custom message to the end user by using one of the overridden methods for ProcessModuleLoadException.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

Try



BindData()

Catch exc As Exception



ProcessModuleLoadException(“An error occurred in displaying the User listing.  An administrator has been notified.”  Me, exc)

End Try

End Sub
In this case above, upon encountering an exception, the end user will see the custom message “An error occurred in displaying the User listing.  An administrator has been notified.” instead of the default message of “Error: [module name] is currently unavailable.”
Application Exceptions

Exceptions generated by the application are caught by this new method in global.asax.vb:

Public Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)

Dim lex As New BaseApplicationException("Unhandled Error: ", Server.GetLastError)

Microsoft.ApplicationBlocks.ExceptionManagement.ExceptionManager.Publish(lex)

End Sub
This throws a general exception that is logged to the XML log file.  Since this is an application level error, it is fatal and a custom error message cannot be displayed.  Instead, the error will be logged and the exception handling will be managed by ASP.NET’s behavior, not the portal’s.

Other Exceptions

Other exceptions are handled as needed using try/catch.  Some error handling has been added to BasePage.vb to handle exceptions that are not gracefully handled elsewhere.  Also, some error handling has been added to skin.vb to catch exceptions where a module (.ascx) cannot be found, therefore cannot be loaded.

Here is an example of the log for a ModuleLoadException:

<exceptions>
<ExceptionInformation>


<AdditionalInformationProperty ExceptionManager.MachineName="MM42292PA" ExceptionManager.TimeStamp="1/12/2004 3:14:28 PM" ExceptionManager.FullName="Microsoft.ApplicationBlocks.ExceptionManagement, Version=1.0.1406.17859, Culture=neutral, PublicKeyToken=null" ExceptionManager.AppDomainName="/LM/W3SVC/1/ROOT/DNN2ExceptionsSource-4-127184300317271257" ExceptionManager.ThreadIdentity="" ExceptionManager.WindowsIdentity="MM42292PA\ASPNET"/>


<Exception ExceptionType="DotNetNuke.ModuleLoadException" ModuleId="437" ModuleDefId="70" FriendlyName="User Defined Table" ModuleControlSource="DesktopModules/UserDefinedTable/UserDefinedTable.ascx" FileName="C:\dotnetnuke\DNN2Exceptions\DesktopModules\UserDefinedTable\UserDefinedTable.ascx.vb" FileLineNumber="128" FileColumnNumber="13" Method="DotNetNuke.UserDefinedTable.BindData" DatabaseVersion="2.0.0" AssemblyVersion="2.0.1472.22877" PortalID="0" UserID="-1" ActiveTabID="1" ActiveTabName="Home" AbsoluteURL="/dnn2exceptionssource/DesktopDefault.aspx" AbsoluteURLReferrer="" ExceptionGUID="dd48b32e-5527-48c0-a704-acbab0816670" MachineName="MM42292PA" CreatedDateTime="1/12/2004 3:14:28 PM" AppDomainName="/LM/W3SVC/1/ROOT/DNN2ExceptionsSource-4-127184300317271257" ThreadIdentityName="" WindowsIdentityName="MM42292PA\ASPNET" Message="Object reference not set to an instance of an object.">



<Exception ExceptionType="System.NullReferenceException" Message="Object reference not set to an instance of an object." TargetSite="Void BindData()" Source="DotNetNuke">




<StackTrace>   at DotNetNuke.UserDefinedTable.BindData() in C:\dotnetnuke\DNN2Exceptions\DesktopModules\UserDefinedTable\UserDefinedTable.ascx.vb:line 128

   at DotNetNuke.UserDefinedTable.Page_Load(Object sender, EventArgs e) in C:\dotnetnuke\DNN2Exceptions\DesktopModules\UserDefinedTable\UserDefinedTable.ascx.vb:line 47</StackTrace>



</Exception>


</Exception>

</ExceptionInformation>
</exceptions>
Here is an example of the log for a PageLoadException:

<exceptions>

<ExceptionInformation>


<AdditionalInformationProperty ExceptionManager.MachineName="MM42292PA" ExceptionManager.TimeStamp="1/12/2004 3:14:29 PM" ExceptionManager.FullName="Microsoft.ApplicationBlocks.ExceptionManagement, Version=1.0.1406.17859, Culture=neutral, PublicKeyToken=null" ExceptionManager.AppDomainName="/LM/W3SVC/1/ROOT/DNN2ExceptionsSource-4-127184300317271257" ExceptionManager.ThreadIdentity="" ExceptionManager.WindowsIdentity="MM42292PA\ASPNET"/>


<Exception ExceptionType="DotNetNuke.PageLoadException" FileName="C:\dotnetnuke\DNN2Exceptions\components\Exceptions\Exceptions.vb" FileLineNumber="125" FileColumnNumber="13" Method="DotNetNuke.Exceptions.ProcessModuleLoadException" DatabaseVersion="2.0.0" AssemblyVersion="2.0.1472.22877" PortalID="0" UserID="-1" ActiveTabID="1" ActiveTabName="Home" AbsoluteURL="/dnn2exceptionssource/DesktopDefault.aspx" AbsoluteURLReferrer="" ExceptionGUID="eb37a9ea-f130-45f6-90ec-9eef78a9edc1" MachineName="MM42292PA" CreatedDateTime="1/12/2004 3:14:29 PM" AppDomainName="/LM/W3SVC/1/ROOT/DNN2ExceptionsSource-4-127184300317271257" ThreadIdentityName="" WindowsIdentityName="MM42292PA\ASPNET" Message="Specified cast is not valid.">



<Exception ExceptionType="System.InvalidCastException" Message="Specified cast is not valid." TargetSite="Void ProcessModuleLoadException(System.Web.UI.Control, System.Exception, Boolean)" Source="DotNetNuke">




<StackTrace>   at DotNetNuke.Exceptions.ProcessModuleLoadException(Control UserCtrl, Exception exc, Boolean DisplayErrorMessage) in C:\dotnetnuke\DNN2Exceptions\components\Exceptions\Exceptions.vb:line 125

   at DotNetNuke.Skins.ModuleMessage.Page_Load(Object sender, EventArgs e) in C:\dotnetnuke\DNN2Exceptions\admin\Skins\ModuleMessage.ascx.vb:line 109

   at System.EventHandler.Invoke(Object sender, EventArgs e)

   at System.Web.UI.Control.OnLoad(EventArgs e)

   at System.Web.UI.Control.LoadRecursive()

   at System.Web.UI.Page.ProcessRequestMain()</StackTrace>



</Exception>


</Exception>

</ExceptionInformation>
</exceptions>
Copyright © 2002-2004- – DotNetNuke – All Rights Reserved

DotNetNuke Exception Handling2.doc

[image: image1.png]